// xImaTran.cpp : Transformation functions /* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it * CxImage version 7.0.0 31/Dec/2010 */ #include "ximage.h" #include "ximath.h" #if CXIMAGE_SUPPORT_BASICTRANSFORMATIONS //////////////////////////////////////////////////////////////////////////////// /** * Increases the number of bits per pixel of the image. * \param nbit: 4, 8, 24 */ bool CxImage::IncreaseBpp(uint32_t nbit) { if (!pDib) return false; switch (nbit){ case 4: { if (head.biBitCount==4) return true; if (head.biBitCount>4) return false; CxImage tmp; tmp.CopyInfo(*this); tmp.Create(head.biWidth,head.biHeight,4,info.dwType); tmp.SetPalette(GetPalette(),GetNumColors()); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } #if CXIMAGE_SUPPORT_SELECTION tmp.SelectionCopy(*this); #endif //CXIMAGE_SUPPORT_SELECTION #if CXIMAGE_SUPPORT_ALPHA tmp.AlphaCopy(*this); #endif //CXIMAGE_SUPPORT_ALPHA for (int32_t y=0;y8) return false; CxImage tmp; tmp.CopyInfo(*this); tmp.Create(head.biWidth,head.biHeight,8,info.dwType); tmp.SetPalette(GetPalette(),GetNumColors()); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } #if CXIMAGE_SUPPORT_SELECTION tmp.SelectionCopy(*this); #endif //CXIMAGE_SUPPORT_SELECTION #if CXIMAGE_SUPPORT_ALPHA tmp.AlphaCopy(*this); #endif //CXIMAGE_SUPPORT_ALPHA for (int32_t y=0;y24) return false; CxImage tmp; tmp.CopyInfo(*this); tmp.Create(head.biWidth,head.biHeight,24,info.dwType); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } if (info.nBkgndIndex>=0) //translate transparency tmp.info.nBkgndColor=GetPaletteColor((uint8_t)info.nBkgndIndex); #if CXIMAGE_SUPPORT_SELECTION tmp.SelectionCopy(*this); #endif //CXIMAGE_SUPPORT_SELECTION #if CXIMAGE_SUPPORT_ALPHA tmp.AlphaCopy(*this); if (AlphaPaletteIsValid() && !AlphaIsValid()) tmp.AlphaCreate(); #endif //CXIMAGE_SUPPORT_ALPHA for (int32_t y=0;y= 0) info.nBkgndIndex = ppal[info.nBkgndIndex].rgbBlue; //create a "real" 8 bit gray scale image if (head.biBitCount==8){ uint8_t *img=info.pImage; for(uint32_t i=0;i> 1]&((uint8_t)0x0F<> pos)].rgbBlue; } else { uint8_t pos = (uint8_t)(7-x%8); iDst[x]= ppal[(uint8_t)((iSrc[x >> 3]&((uint8_t)0x01<> pos)].rgbBlue; } } } Transfer(ima); } } else { //from RGB to 8 bit gray scale uint8_t *iSrc=info.pImage; CxImage ima; ima.CopyInfo(*this); if (!ima.Create(head.biWidth,head.biHeight,8,info.dwType)) return false; ima.SetGrayPalette(); if (GetTransIndex()>=0){ RGBQUAD c = GetTransColor(); ima.SetTransIndex((uint8_t)RGB2GRAY(c.rgbRed,c.rgbGreen,c.rgbBlue)); } #if CXIMAGE_SUPPORT_SELECTION ima.SelectionCopy(*this); #endif //CXIMAGE_SUPPORT_SELECTION #if CXIMAGE_SUPPORT_ALPHA ima.AlphaCopy(*this); #endif //CXIMAGE_SUPPORT_ALPHA uint8_t *img=ima.GetBits(); int32_t l8=ima.GetEffWidth(); int32_t l=head.biWidth * 3; for(int32_t y=0; y < head.biHeight; y++) { for(int32_t x=0,x8=0; x < l; x+=3,x8++) { img[x8+y*l8]=(uint8_t)RGB2GRAY(*(iSrc+x+2),*(iSrc+x+1),*(iSrc+x+0)); } iSrc+=info.dwEffWidth; } Transfer(ima); } return true; } //////////////////////////////////////////////////////////////////////////////// /** * \sa Mirror * \author [qhbo] */ bool CxImage::Flip(bool bFlipSelection, bool bFlipAlpha) { if (!pDib) return false; uint8_t *buff = (uint8_t*)malloc(info.dwEffWidth); if (!buff) return false; uint8_t *iSrc,*iDst; iSrc = GetBits(head.biHeight-1); iDst = GetBits(0); for (int32_t i=0; i<(head.biHeight/2); ++i) { memcpy(buff, iSrc, info.dwEffWidth); memcpy(iSrc, iDst, info.dwEffWidth); memcpy(iDst, buff, info.dwEffWidth); iSrc-=info.dwEffWidth; iDst+=info.dwEffWidth; } free(buff); if (bFlipSelection){ #if CXIMAGE_SUPPORT_SELECTION SelectionFlip(); #endif //CXIMAGE_SUPPORT_SELECTION } if (bFlipAlpha){ #if CXIMAGE_SUPPORT_ALPHA AlphaFlip(); #endif //CXIMAGE_SUPPORT_ALPHA } return true; } //////////////////////////////////////////////////////////////////////////////// /** * \sa Flip */ bool CxImage::Mirror(bool bMirrorSelection, bool bMirrorAlpha) { if (!pDib) return false; CxImage* imatmp = new CxImage(*this,false,true,true); if (!imatmp) return false; if (!imatmp->IsValid()){ delete imatmp; return false; } uint8_t *iSrc,*iDst; int32_t wdt=(head.biWidth-1) * (head.biBitCount==24 ? 3:1); iSrc=info.pImage + wdt; iDst=imatmp->info.pImage; int32_t x,y; switch (head.biBitCount){ case 24: for(y=0; y < head.biHeight; y++){ for(x=0; x <= wdt; x+=3){ *(iDst+x)=*(iSrc-x); *(iDst+x+1)=*(iSrc-x+1); *(iDst+x+2)=*(iSrc-x+2); } iSrc+=info.dwEffWidth; iDst+=info.dwEffWidth; } break; case 8: for(y=0; y < head.biHeight; y++){ for(x=0; x <= wdt; x++) *(iDst+x)=*(iSrc-x); iSrc+=info.dwEffWidth; iDst+=info.dwEffWidth; } break; default: for(y=0; y < head.biHeight; y++){ for(x=0; x <= wdt; x++) imatmp->SetPixelIndex(x,y,GetPixelIndex(wdt-x,y)); } } if (bMirrorSelection){ #if CXIMAGE_SUPPORT_SELECTION imatmp->SelectionMirror(); #endif //CXIMAGE_SUPPORT_SELECTION } if (bMirrorAlpha){ #if CXIMAGE_SUPPORT_ALPHA imatmp->AlphaMirror(); #endif //CXIMAGE_SUPPORT_ALPHA } Transfer(*imatmp); delete imatmp; return true; } //////////////////////////////////////////////////////////////////////////////// #define RBLOCK 64 //////////////////////////////////////////////////////////////////////////////// bool CxImage::RotateLeft(CxImage* iDst) { if (!pDib) return false; int32_t newWidth = GetHeight(); int32_t newHeight = GetWidth(); CxImage imgDest; imgDest.CopyInfo(*this); imgDest.Create(newWidth,newHeight,GetBpp(),GetType()); imgDest.SetPalette(GetPalette()); #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) imgDest.AlphaCreate(); #endif #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()) imgDest.SelectionCreate(); #endif int32_t x,x2,y,dlineup; // Speedy rotate for BW images if (head.biBitCount == 1) { uint8_t *sbits, *dbits, *dbitsmax, bitpos, *nrow,*srcdisp; ldiv_t div_r; uint8_t *bsrc = GetBits(), *bdest = imgDest.GetBits(); dbitsmax = bdest + imgDest.head.biSizeImage - 1; dlineup = 8 * imgDest.info.dwEffWidth - imgDest.head.biWidth; imgDest.Clear(0); for (y = 0; y < head.biHeight; y++) { // Figure out the Column we are going to be copying to div_r = ldiv(y + dlineup, (int32_t)8); // set bit pos of src column byte bitpos = (uint8_t)(1 << div_r.rem); srcdisp = bsrc + y * info.dwEffWidth; for (x = 0; x < (int32_t)info.dwEffWidth; x++) { // Get Source Bits sbits = srcdisp + x; // Get destination column nrow = bdest + (x * 8) * imgDest.info.dwEffWidth + imgDest.info.dwEffWidth - 1 - div_r.quot; for (int32_t z = 0; z < 8; z++) { // Get Destination Byte dbits = nrow + z * imgDest.info.dwEffWidth; if ((dbits < bdest) || (dbits > dbitsmax)) break; if (*sbits & (128 >> z)) *dbits |= bitpos; } } }//for y #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) { for (x = 0; x < newWidth; x++){ x2=newWidth-x-1; for (y = 0; y < newHeight; y++){ imgDest.AlphaSet(x,y,BlindAlphaGet(y, x2)); }//for y }//for x } #endif //CXIMAGE_SUPPORT_ALPHA #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()) { imgDest.info.rSelectionBox.left = newWidth-info.rSelectionBox.top; imgDest.info.rSelectionBox.right = newWidth-info.rSelectionBox.bottom; imgDest.info.rSelectionBox.bottom = info.rSelectionBox.left; imgDest.info.rSelectionBox.top = info.rSelectionBox.right; for (x = 0; x < newWidth; x++){ x2=newWidth-x-1; for (y = 0; y < newHeight; y++){ imgDest.SelectionSet(x,y,BlindSelectionGet(y, x2)); }//for y }//for x } #endif //CXIMAGE_SUPPORT_SELECTION } else { //anything other than BW: //bd, 10. 2004: This optimized version of rotation rotates image by smaller blocks. It is quite //a bit faster than obvious algorithm, because it produces much less CPU cache misses. //This optimization can be tuned by changing block size (RBLOCK). 96 is good value for current //CPUs (tested on Athlon XP and Celeron D). Larger value (if CPU has enough cache) will increase //speed somehow, but once you drop out of CPU's cache, things will slow down drastically. //For older CPUs with less cache, lower value would yield better results. uint8_t *srcPtr, *dstPtr; //source and destionation for 24-bit version int32_t xs, ys; //x-segment and y-segment for (xs = 0; xs < newWidth; xs+=RBLOCK) { //for all image blocks of RBLOCK*RBLOCK pixels for (ys = 0; ys < newHeight; ys+=RBLOCK) { if (head.biBitCount==24) { //RGB24 optimized pixel access: for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ //do rotation info.nProgress = (int32_t)(100*x/newWidth); x2=newWidth-x-1; dstPtr = (uint8_t*) imgDest.BlindGetPixelPointer(x,ys); srcPtr = (uint8_t*) BlindGetPixelPointer(ys, x2); for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ //imgDest.SetPixelColor(x, y, GetPixelColor(y, x2)); *(dstPtr) = *(srcPtr); *(dstPtr+1) = *(srcPtr+1); *(dstPtr+2) = *(srcPtr+2); srcPtr += 3; dstPtr += imgDest.info.dwEffWidth; }//for y }//for x } else { //anything else than 24bpp (and 1bpp): palette for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ info.nProgress = (int32_t)(100*x/newWidth); // x2=newWidth-x-1; for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ imgDest.SetPixelIndex(x, y, BlindGetPixelIndex(y, x2)); }//for y }//for x }//if (version selection) #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) { for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ x2=newWidth-x-1; for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ imgDest.AlphaSet(x,y,BlindAlphaGet(y, x2)); }//for y }//for x }//if (alpha channel) #endif //CXIMAGE_SUPPORT_ALPHA #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()) { imgDest.info.rSelectionBox.left = newWidth-info.rSelectionBox.top; imgDest.info.rSelectionBox.right = newWidth-info.rSelectionBox.bottom; imgDest.info.rSelectionBox.bottom = info.rSelectionBox.left; imgDest.info.rSelectionBox.top = info.rSelectionBox.right; for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ x2=newWidth-x-1; for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ imgDest.SelectionSet(x,y,BlindSelectionGet(y, x2)); }//for y }//for x }//if (selection) #endif //CXIMAGE_SUPPORT_SELECTION }//for ys }//for xs }//if //select the destination if (iDst) iDst->Transfer(imgDest); else Transfer(imgDest); return true; } //////////////////////////////////////////////////////////////////////////////// bool CxImage::RotateRight(CxImage* iDst) { if (!pDib) return false; int32_t newWidth = GetHeight(); int32_t newHeight = GetWidth(); CxImage imgDest; imgDest.CopyInfo(*this); imgDest.Create(newWidth,newHeight,GetBpp(),GetType()); imgDest.SetPalette(GetPalette()); #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) imgDest.AlphaCreate(); #endif #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()) imgDest.SelectionCreate(); #endif int32_t x,y,y2; // Speedy rotate for BW images if (head.biBitCount == 1) { uint8_t *sbits, *dbits, *dbitsmax, bitpos, *nrow,*srcdisp; ldiv_t div_r; uint8_t *bsrc = GetBits(), *bdest = imgDest.GetBits(); dbitsmax = bdest + imgDest.head.biSizeImage - 1; imgDest.Clear(0); for (y = 0; y < head.biHeight; y++) { // Figure out the Column we are going to be copying to div_r = ldiv(y, (int32_t)8); // set bit pos of src column byte bitpos = (uint8_t)(128 >> div_r.rem); srcdisp = bsrc + y * info.dwEffWidth; for (x = 0; x < (int32_t)info.dwEffWidth; x++) { // Get Source Bits sbits = srcdisp + x; // Get destination column nrow = bdest + (imgDest.head.biHeight-1-(x*8)) * imgDest.info.dwEffWidth + div_r.quot; for (int32_t z = 0; z < 8; z++) { // Get Destination Byte dbits = nrow - z * imgDest.info.dwEffWidth; if ((dbits < bdest) || (dbits > dbitsmax)) break; if (*sbits & (128 >> z)) *dbits |= bitpos; } } } #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()){ for (y = 0; y < newHeight; y++){ y2=newHeight-y-1; for (x = 0; x < newWidth; x++){ imgDest.AlphaSet(x,y,BlindAlphaGet(y2, x)); } } } #endif //CXIMAGE_SUPPORT_ALPHA #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()){ imgDest.info.rSelectionBox.left = info.rSelectionBox.bottom; imgDest.info.rSelectionBox.right = info.rSelectionBox.top; imgDest.info.rSelectionBox.bottom = newHeight-info.rSelectionBox.right; imgDest.info.rSelectionBox.top = newHeight-info.rSelectionBox.left; for (y = 0; y < newHeight; y++){ y2=newHeight-y-1; for (x = 0; x < newWidth; x++){ imgDest.SelectionSet(x,y,BlindSelectionGet(y2, x)); } } } #endif //CXIMAGE_SUPPORT_SELECTION } else { //anything else but BW uint8_t *srcPtr, *dstPtr; //source and destionation for 24-bit version int32_t xs, ys; //x-segment and y-segment for (xs = 0; xs < newWidth; xs+=RBLOCK) { for (ys = 0; ys < newHeight; ys+=RBLOCK) { if (head.biBitCount==24) { //RGB24 optimized pixel access: for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ info.nProgress = (int32_t)(100*y/newHeight); // y2=newHeight-y-1; dstPtr = (uint8_t*) imgDest.BlindGetPixelPointer(xs,y); srcPtr = (uint8_t*) BlindGetPixelPointer(y2, xs); for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ //imgDest.SetPixelColor(x, y, GetPixelColor(y2, x)); *(dstPtr) = *(srcPtr); *(dstPtr+1) = *(srcPtr+1); *(dstPtr+2) = *(srcPtr+2); dstPtr += 3; srcPtr += info.dwEffWidth; }//for x }//for y } else { //anything else than BW & RGB24: palette for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ info.nProgress = (int32_t)(100*y/newHeight); // y2=newHeight-y-1; for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ imgDest.SetPixelIndex(x, y, BlindGetPixelIndex(y2, x)); }//for x }//for y }//if #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()){ for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ y2=newHeight-y-1; for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ imgDest.AlphaSet(x,y,BlindAlphaGet(y2, x)); }//for x }//for y }//if (has alpha) #endif //CXIMAGE_SUPPORT_ALPHA #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()){ imgDest.info.rSelectionBox.left = info.rSelectionBox.bottom; imgDest.info.rSelectionBox.right = info.rSelectionBox.top; imgDest.info.rSelectionBox.bottom = newHeight-info.rSelectionBox.right; imgDest.info.rSelectionBox.top = newHeight-info.rSelectionBox.left; for (y = ys; y < min(newHeight, ys+RBLOCK); y++){ y2=newHeight-y-1; for (x = xs; x < min(newWidth, xs+RBLOCK); x++){ imgDest.SelectionSet(x,y,BlindSelectionGet(y2, x)); }//for x }//for y }//if (has alpha) #endif //CXIMAGE_SUPPORT_SELECTION }//for ys }//for xs }//if //select the destination if (iDst) iDst->Transfer(imgDest); else Transfer(imgDest); return true; } //////////////////////////////////////////////////////////////////////////////// bool CxImage::Negative() { if (!pDib) return false; if (head.biBitCount<=8){ if (IsGrayScale()){ //GRAYSCALE, selection if (pSelection){ for(int32_t y=info.rSelectionBox.bottom; y invert transparent color too info.nBkgndColor.rgbBlue = (uint8_t)(255-info.nBkgndColor.rgbBlue); info.nBkgndColor.rgbGreen = (uint8_t)(255-info.nBkgndColor.rgbGreen); info.nBkgndColor.rgbRed = (uint8_t)(255-info.nBkgndColor.rgbRed); } return true; } //////////////////////////////////////////////////////////////////////////////// #endif //CXIMAGE_SUPPORT_BASICTRANSFORMATIONS //////////////////////////////////////////////////////////////////////////////// #if CXIMAGE_SUPPORT_TRANSFORMATION //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// #if CXIMAGE_SUPPORT_EXIF bool CxImage::RotateExif(int32_t orientation /* = 0 */) { bool ret = true; if (orientation <= 0) orientation = info.ExifInfo.Orientation; if (orientation == 3) ret = Rotate180(); else if (orientation == 6) ret = RotateRight(); else if (orientation == 8) ret = RotateLeft(); else if (orientation == 5) ret = RotateLeft(); info.ExifInfo.Orientation = 1; return ret; } #endif //CXIMAGE_SUPPORT_EXIF //////////////////////////////////////////////////////////////////////////////// bool CxImage::Rotate(float angle, CxImage* iDst) { if (!pDib) return false; if (fmod(angle,180.0f)==0.0f && fmod(angle,360.0f)!=0.0f) return Rotate180(iDst); // Copyright (c) 1996-1998 Ulrich von Zadow // Negative the angle, because the y-axis is negative. double ang = -angle*acos((float)0)/90; int32_t newWidth, newHeight; int32_t nWidth = GetWidth(); int32_t nHeight= GetHeight(); double cos_angle = cos(ang); double sin_angle = sin(ang); // Calculate the size of the new bitmap POINT p1={0,0}; POINT p2={nWidth,0}; POINT p3={0,nHeight}; POINT p4={nWidth,nHeight}; CxPoint2 newP1,newP2,newP3,newP4, leftTop, rightTop, leftBottom, rightBottom; newP1.x = (float)p1.x; newP1.y = (float)p1.y; newP2.x = (float)(p2.x*cos_angle - p2.y*sin_angle); newP2.y = (float)(p2.x*sin_angle + p2.y*cos_angle); newP3.x = (float)(p3.x*cos_angle - p3.y*sin_angle); newP3.y = (float)(p3.x*sin_angle + p3.y*cos_angle); newP4.x = (float)(p4.x*cos_angle - p4.y*sin_angle); newP4.y = (float)(p4.x*sin_angle + p4.y*cos_angle); leftTop.x = min(min(newP1.x,newP2.x),min(newP3.x,newP4.x)); leftTop.y = min(min(newP1.y,newP2.y),min(newP3.y,newP4.y)); rightBottom.x = max(max(newP1.x,newP2.x),max(newP3.x,newP4.x)); rightBottom.y = max(max(newP1.y,newP2.y),max(newP3.y,newP4.y)); leftBottom.x = leftTop.x; leftBottom.y = rightBottom.y; rightTop.x = rightBottom.x; rightTop.y = leftTop.y; newWidth = (int32_t) floor(0.5f + rightTop.x - leftTop.x); newHeight= (int32_t) floor(0.5f + leftBottom.y - leftTop.y); CxImage imgDest; imgDest.CopyInfo(*this); imgDest.Create(newWidth,newHeight,GetBpp(),GetType()); imgDest.SetPalette(GetPalette()); #if CXIMAGE_SUPPORT_ALPHA if(AlphaIsValid()) //MTA: Fix for rotation problem when the image has an alpha channel { imgDest.AlphaCreate(); imgDest.AlphaClear(); } #endif //CXIMAGE_SUPPORT_ALPHA int32_t x,y,newX,newY,oldX,oldY; if (head.biClrUsed==0){ //RGB for (y = (int32_t)leftTop.y, newY = 0; y<=(int32_t)leftBottom.y; y++,newY++){ info.nProgress = (int32_t)(100*newY/newHeight); if (info.nEscape) break; for (x = (int32_t)leftTop.x, newX = 0; x<=(int32_t)rightTop.x; x++,newX++){ oldX = (int32_t)(x*cos_angle + y*sin_angle + 0.5); oldY = (int32_t)(y*cos_angle - x*sin_angle + 0.5); imgDest.SetPixelColor(newX,newY,GetPixelColor(oldX,oldY)); #if CXIMAGE_SUPPORT_ALPHA imgDest.AlphaSet(newX,newY,AlphaGet(oldX,oldY)); //MTA: copy the alpha value #endif //CXIMAGE_SUPPORT_ALPHA } } } else { //PALETTE for (y = (int32_t)leftTop.y, newY = 0; y<=(int32_t)leftBottom.y; y++,newY++){ info.nProgress = (int32_t)(100*newY/newHeight); if (info.nEscape) break; for (x = (int32_t)leftTop.x, newX = 0; x<=(int32_t)rightTop.x; x++,newX++){ oldX = (int32_t)(x*cos_angle + y*sin_angle + 0.5); oldY = (int32_t)(y*cos_angle - x*sin_angle + 0.5); imgDest.SetPixelIndex(newX,newY,GetPixelIndex(oldX,oldY)); #if CXIMAGE_SUPPORT_ALPHA imgDest.AlphaSet(newX,newY,AlphaGet(oldX,oldY)); //MTA: copy the alpha value #endif //CXIMAGE_SUPPORT_ALPHA } } } //select the destination if (iDst) iDst->Transfer(imgDest); else Transfer(imgDest); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Rotates image around it's center. * Method can use interpolation with paletted images, but does not change pallete, so results vary. * (If you have only four colours in a palette, there's not much room for interpolation.) * * \param angle - angle in degrees (positive values rotate clockwise) * \param *iDst - destination image (if null, this image is changed) * \param inMethod - interpolation method used * (IM_NEAREST_NEIGHBOUR produces aliasing (fast), IM_BILINEAR softens picture a bit (slower) * IM_SHARPBICUBIC is slower and produces some halos...) * \param ofMethod - overflow method (how to choose colour of pixels that have no source) * \param replColor - replacement colour to use (OM_COLOR, OM_BACKGROUND with no background colour...) * \param optimizeRightAngles - call faster methods for 90, 180, and 270 degree rotations. Faster methods * are called for angles, where error (in location of corner pixels) is less * than 0.25 pixels. * \param bKeepOriginalSize - rotates the image without resizing. * * \author ***bd*** 2.2004 */ bool CxImage::Rotate2(float angle, CxImage *iDst, InterpolationMethod inMethod, OverflowMethod ofMethod, RGBQUAD *replColor, bool const optimizeRightAngles, bool const bKeepOriginalSize) { if (!pDib) return false; //no dib no go if (fmod(angle,180.0f)==0.0f && fmod(angle,360.0f)!=0.0f) return Rotate180(iDst); double ang = -angle*acos(0.0f)/90.0f; //convert angle to radians and invert (positive angle performs clockwise rotation) float cos_angle = (float) cos(ang); //these two are needed later (to rotate) float sin_angle = (float) sin(ang); //Calculate the size of the new bitmap (rotate corners of image) CxPoint2 p[4]; //original corners of the image p[0]=CxPoint2(-0.5f,-0.5f); p[1]=CxPoint2(GetWidth()-0.5f,-0.5f); p[2]=CxPoint2(-0.5f,GetHeight()-0.5f); p[3]=CxPoint2(GetWidth()-0.5f,GetHeight()-0.5f); CxPoint2 newp[4]; //rotated positions of corners //(rotate corners) if (bKeepOriginalSize){ for (int32_t i=0; i<4; i++) { newp[i].x = p[i].x; newp[i].y = p[i].y; }//for } else { for (int32_t i=0; i<4; i++) { newp[i].x = (p[i].x*cos_angle - p[i].y*sin_angle); newp[i].y = (p[i].x*sin_angle + p[i].y*cos_angle); }//for i if (optimizeRightAngles) { //For rotations of 90, -90 or 180 or 0 degrees, call faster routines if (newp[3].Distance(CxPoint2(GetHeight()-0.5f, 0.5f-GetWidth())) < 0.25) //rotation right for circa 90 degrees (diagonal pixels less than 0.25 pixel away from 90 degree rotation destination) return RotateRight(iDst); if (newp[3].Distance(CxPoint2(0.5f-GetHeight(), -0.5f+GetWidth())) < 0.25) //rotation left for ~90 degrees return RotateLeft(iDst); if (newp[3].Distance(CxPoint2(0.5f-GetWidth(), 0.5f-GetHeight())) < 0.25) //rotation left for ~180 degrees return Rotate180(iDst); if (newp[3].Distance(p[3]) < 0.25) { //rotation not significant if (iDst) iDst->Copy(*this); //copy image to iDst, if required return true; //and we're done }//if }//if }//if //(read new dimensions from location of corners) float minx = (float) min(min(newp[0].x,newp[1].x),min(newp[2].x,newp[3].x)); float miny = (float) min(min(newp[0].y,newp[1].y),min(newp[2].y,newp[3].y)); float maxx = (float) max(max(newp[0].x,newp[1].x),max(newp[2].x,newp[3].x)); float maxy = (float) max(max(newp[0].y,newp[1].y),max(newp[2].y,newp[3].y)); int32_t newWidth = (int32_t) floor(maxx-minx+0.5f); int32_t newHeight= (int32_t) floor(maxy-miny+0.5f); float ssx=((maxx+minx)- ((float) newWidth-1))/2.0f; //start for x float ssy=((maxy+miny)- ((float) newHeight-1))/2.0f; //start for y float newxcenteroffset = 0.5f * newWidth; float newycenteroffset = 0.5f * newHeight; if (bKeepOriginalSize){ ssx -= 0.5f * GetWidth(); ssy -= 0.5f * GetHeight(); } //create destination image CxImage imgDest; imgDest.CopyInfo(*this); imgDest.Create(newWidth,newHeight,GetBpp(),GetType()); imgDest.SetPalette(GetPalette()); #if CXIMAGE_SUPPORT_ALPHA if(AlphaIsValid()) imgDest.AlphaCreate(); //MTA: Fix for rotation problem when the image has an alpha channel #endif //CXIMAGE_SUPPORT_ALPHA RGBQUAD rgb; //pixel colour RGBQUAD rc; if (replColor!=0) rc=*replColor; else { rc.rgbRed=255; rc.rgbGreen=255; rc.rgbBlue=255; rc.rgbReserved=0; }//if float x,y; //destination location (float, with proper offset) float origx, origy; //origin location int32_t destx, desty; //destination location y=ssy; //initialize y if (!IsIndexed()){ //RGB24 //optimized RGB24 implementation (direct write to destination): uint8_t *pxptr; #if CXIMAGE_SUPPORT_ALPHA uint8_t *pxptra=0; #endif //CXIMAGE_SUPPORT_ALPHA for (desty=0; destyTransfer(imgDest); else Transfer(imgDest); return true; } //////////////////////////////////////////////////////////////////////////////// bool CxImage::Rotate180(CxImage* iDst) { if (!pDib) return false; int32_t wid = GetWidth(); int32_t ht = GetHeight(); CxImage imgDest; imgDest.CopyInfo(*this); imgDest.Create(wid,ht,GetBpp(),GetType()); imgDest.SetPalette(GetPalette()); #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) imgDest.AlphaCreate(); #endif //CXIMAGE_SUPPORT_ALPHA int32_t x,y,y2; for (y = 0; y < ht; y++){ info.nProgress = (int32_t)(100*y/ht); // y2=ht-y-1; for (x = 0; x < wid; x++){ if(head.biClrUsed==0)//RGB imgDest.SetPixelColor(wid-x-1, y2, BlindGetPixelColor(x, y)); else //PALETTE imgDest.SetPixelIndex(wid-x-1, y2, BlindGetPixelIndex(x, y)); #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) imgDest.AlphaSet(wid-x-1, y2,BlindAlphaGet(x, y)); #endif //CXIMAGE_SUPPORT_ALPHA } } //select the destination if (iDst) iDst->Transfer(imgDest); else Transfer(imgDest); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Resizes the image. mode can be 0 for slow (bilinear) method , * 1 for fast (nearest pixel) method, or 2 for accurate (bicubic spline interpolation) method. * The function is faster with 24 and 1 bpp images, slow for 4 bpp images and slowest for 8 bpp images. */ bool CxImage::Resample(int32_t newx, int32_t newy, int32_t mode, CxImage* iDst) { if (newx==0 || newy==0) return false; if (head.biWidth==newx && head.biHeight==newy){ if (iDst) iDst->Copy(*this); return true; } float xScale, yScale, fX, fY; xScale = (float)head.biWidth / (float)newx; yScale = (float)head.biHeight / (float)newy; CxImage newImage; newImage.CopyInfo(*this); newImage.Create(newx,newy,head.biBitCount,GetType()); newImage.SetPalette(GetPalette()); if (!newImage.IsValid()){ strcpy(info.szLastError,newImage.GetLastError()); return false; } switch (mode) { case 1: // nearest pixel { for(int32_t y=0; y=head.biHeight) yy = head.biHeight-1; for(int32_t n=-1; n<3; n++) { r2 = r1 * KernelBSpline(b - (float)n); xx = i_x+n; if (xx<0) xx=0; if (xx>=head.biWidth) xx=head.biWidth-1; if (head.biClrUsed){ rgb = GetPixelColor(xx,yy); } else { iDst = info.pImage + yy*info.dwEffWidth + xx*3; rgb.rgbBlue = *iDst++; rgb.rgbGreen= *iDst++; rgb.rgbRed = *iDst; } rr += rgb.rgbRed * r2; gg += rgb.rgbGreen * r2; bb += rgb.rgbBlue * r2; } } if (head.biClrUsed) newImage.SetPixelColor(x,y,RGB(rr,gg,bb)); else { iDst = newImage.info.pImage + y*newImage.info.dwEffWidth + x*3; *iDst++ = (uint8_t)bb; *iDst++ = (uint8_t)gg; *iDst = (uint8_t)rr; } } } break; } default: // bilinear interpolation if (!(head.biWidth>newx && head.biHeight>newy && head.biBitCount==24)) { // (c) 1999 Steve McMahon (steve@dogma.demon.co.uk) int32_t ifX, ifY, ifX1, ifY1, xmax, ymax; float ir1, ir2, ig1, ig2, ib1, ib2, dx, dy; uint8_t r,g,b; RGBQUAD rgb1, rgb2, rgb3, rgb4; xmax = head.biWidth-1; ymax = head.biHeight-1; for(int32_t y=0; y const int32_t ACCURACY = 1000; int32_t i,j; // index for faValue int32_t x,y; // coordinates in source image uint8_t* pSource; uint8_t* pDest = newImage.info.pImage; int32_t* naAccu = new int32_t[3 * newx + 3]; int32_t* naCarry = new int32_t[3 * newx + 3]; int32_t* naTemp; int32_t nWeightX,nWeightY; float fEndX; int32_t nScale = (int32_t)(ACCURACY * xScale * yScale); memset(naAccu, 0, sizeof(int32_t) * 3 * newx); memset(naCarry, 0, sizeof(int32_t) * 3 * newx); int32_t u, v = 0; // coordinates in dest image float fEndY = yScale - 1.0f; for (y = 0; y < head.biHeight; y++){ info.nProgress = (int32_t)(100*y/head.biHeight); // if (info.nEscape) break; pSource = info.pImage + y * info.dwEffWidth; u = i = 0; fEndX = xScale - 1.0f; if ((float)y < fEndY) { // complete source row goes into dest row for (x = 0; x < head.biWidth; x++){ if ((float)x < fEndX){ // complete source pixel goes into dest pixel for (j = 0; j < 3; j++) naAccu[i + j] += (*pSource++) * ACCURACY; } else { // source pixel is splitted for 2 dest pixels nWeightX = (int32_t)(((float)x - fEndX) * ACCURACY); for (j = 0; j < 3; j++){ naAccu[i] += (ACCURACY - nWeightX) * (*pSource); naAccu[3 + i++] += nWeightX * (*pSource++); } fEndX += xScale; u++; } } } else { // source row is splitted for 2 dest rows nWeightY = (int32_t)(((float)y - fEndY) * ACCURACY); for (x = 0; x < head.biWidth; x++){ if ((float)x < fEndX){ // complete source pixel goes into 2 pixel for (j = 0; j < 3; j++){ naAccu[i + j] += ((ACCURACY - nWeightY) * (*pSource)); naCarry[i + j] += nWeightY * (*pSource++); } } else { // source pixel is splitted for 4 dest pixels nWeightX = (int32_t)(((float)x - fEndX) * ACCURACY); for (j = 0; j < 3; j++) { naAccu[i] += ((ACCURACY - nWeightY) * (ACCURACY - nWeightX)) * (*pSource) / ACCURACY; *pDest++ = (uint8_t)(naAccu[i] / nScale); naCarry[i] += (nWeightY * (ACCURACY - nWeightX) * (*pSource)) / ACCURACY; naAccu[i + 3] += ((ACCURACY - nWeightY) * nWeightX * (*pSource)) / ACCURACY; naCarry[i + 3] = (nWeightY * nWeightX * (*pSource)) / ACCURACY; i++; pSource++; } fEndX += xScale; u++; } } if (u < newx){ // possibly not completed due to rounding errors for (j = 0; j < 3; j++) *pDest++ = (uint8_t)(naAccu[i++] / nScale); } naTemp = naCarry; naCarry = naAccu; naAccu = naTemp; memset(naCarry, 0, sizeof(int32_t) * 3); // need only to set first pixel zero pDest = newImage.info.pImage + (++v * newImage.info.dwEffWidth); fEndY += yScale; } } if (v < newy){ // possibly not completed due to rounding errors for (i = 0; i < 3 * newx; i++) *pDest++ = (uint8_t)(naAccu[i] / nScale); } delete [] naAccu; delete [] naCarry; } } #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()){ if (1 == mode){ newImage.AlphaCreate(); for(int32_t y=0; yTransfer(newImage); else Transfer(newImage); return true; } //////////////////////////////////////////////////////////////////////////////// /** * New simpler resample. Adds new interpolation methods and simplifies code (using GetPixelColorInterpolated * and GetAreaColorInterpolated). It also (unlike old method) interpolates alpha layer. * * \param newx, newy - size of resampled image * \param inMethod - interpolation method to use (see comments at GetPixelColorInterpolated) * If image size is being reduced, averaging is used instead (or simultaneously with) inMethod. * \param ofMethod - what to replace outside pixels by (only significant for bordering pixels of enlarged image) * \param iDst - pointer to destination CxImage or NULL. * \param disableAveraging - force no averaging when shrinking images (Produces aliasing. * You probably just want to leave this off...) * * \author ***bd*** 2.2004 */ bool CxImage::Resample2( int32_t newx, int32_t newy, InterpolationMethod const inMethod, OverflowMethod const ofMethod, CxImage* const iDst, bool const disableAveraging) { if (newx<=0 || newy<=0 || !pDib) return false; if (head.biWidth==newx && head.biHeight==newy) { //image already correct size (just copy and return) if (iDst) iDst->Copy(*this); return true; }//if //calculate scale of new image (less than 1 for enlarge) float xScale, yScale; xScale = (float)head.biWidth / (float)newx; yScale = (float)head.biHeight / (float)newy; //create temporary destination image CxImage newImage; newImage.CopyInfo(*this); newImage.Create(newx,newy,head.biBitCount,GetType()); newImage.SetPalette(GetPalette()); if (!newImage.IsValid()){ strcpy(info.szLastError,newImage.GetLastError()); return false; } //and alpha channel if required #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) newImage.AlphaCreate(); uint8_t *pxptra = 0; // destination alpha data #endif float sX, sY; //source location int32_t dX,dY; //destination pixel (int32_t value) if ((xScale<=1 && yScale<=1) || disableAveraging) { //image is being enlarged (or interpolation on demand) if (!IsIndexed()) { //RGB24 image (optimized version with direct writes) RGBQUAD q; //pixel colour uint8_t *pxptr; //pointer to destination pixel for(dY=0; dYTransfer(newImage); else Transfer(newImage); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Reduces the number of bits per pixel to nbit (1, 4 or 8). * ppal points to a valid palette for the final image; if not supplied the function will use a standard palette. * ppal is not necessary for reduction to 1 bpp. */ bool CxImage::DecreaseBpp(uint32_t nbit, bool errordiffusion, RGBQUAD* ppal, uint32_t clrimportant) { if (!pDib) return false; if (head.biBitCount < nbit){ strcpy(info.szLastError,"DecreaseBpp: target BPP greater than source BPP"); return false; } if (head.biBitCount == nbit){ if (clrimportant==0) return true; if (head.biClrImportant && (head.biClrImportant 128) { tmp.SetPixelIndex(x, y, 1); error = level - 255; } else { tmp.SetPixelIndex(x, y, 0); error = level; } nlevel = GetPixelIndex(x + 1, y) + (error * 8) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 1, y, level); nlevel = GetPixelIndex(x + 2, y) + (error * 4) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 2, y, level); int32_t i; for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 2; break; case -1: coeff = 4; break; case 0: coeff = 8; break; case 1: coeff = 4; break; case 2: coeff = 2; break; } nlevel = GetPixelIndex(x + i, y + 1) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 1, level); } } } break; } case 3: { //Stucki error diffusion (Thanks to Franco Gerevini) int32_t TotalCoeffSum = 42; int32_t error, nlevel, coeff=1; uint8_t level; for (int32_t y = 0; y < head.biHeight; y++) { info.nProgress = (int32_t)(100 * y / head.biHeight); if (info.nEscape) break; for (int32_t x = 0; x < head.biWidth; x++) { level = BlindGetPixelIndex(x, y); if (level > 128) { tmp.SetPixelIndex(x, y, 1); error = level - 255; } else { tmp.SetPixelIndex(x, y, 0); error = level; } nlevel = GetPixelIndex(x + 1, y) + (error * 8) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 1, y, level); nlevel = GetPixelIndex(x + 2, y) + (error * 4) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 2, y, level); int32_t i; for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 2; break; case -1: coeff = 4; break; case 0: coeff = 8; break; case 1: coeff = 4; break; case 2: coeff = 2; break; } nlevel = GetPixelIndex(x + i, y + 1) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 1, level); } for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 1; break; case -1: coeff = 2; break; case 0: coeff = 4; break; case 1: coeff = 2; break; case 2: coeff = 1; break; } nlevel = GetPixelIndex(x + i, y + 2) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 2, level); } } } break; } case 4: { //Jarvis, Judice and Ninke error diffusion (Thanks to Franco Gerevini) int32_t TotalCoeffSum = 48; int32_t error, nlevel, coeff=1; uint8_t level; for (int32_t y = 0; y < head.biHeight; y++) { info.nProgress = (int32_t)(100 * y / head.biHeight); if (info.nEscape) break; for (int32_t x = 0; x < head.biWidth; x++) { level = BlindGetPixelIndex(x, y); if (level > 128) { tmp.SetPixelIndex(x, y, 1); error = level - 255; } else { tmp.SetPixelIndex(x, y, 0); error = level; } nlevel = GetPixelIndex(x + 1, y) + (error * 7) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 1, y, level); nlevel = GetPixelIndex(x + 2, y) + (error * 5) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 2, y, level); int32_t i; for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 3; break; case -1: coeff = 5; break; case 0: coeff = 7; break; case 1: coeff = 5; break; case 2: coeff = 3; break; } nlevel = GetPixelIndex(x + i, y + 1) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 1, level); } for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 1; break; case -1: coeff = 3; break; case 0: coeff = 5; break; case 1: coeff = 3; break; case 2: coeff = 1; break; } nlevel = GetPixelIndex(x + i, y + 2) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 2, level); } } } break; } case 5: { //Sierra error diffusion (Thanks to Franco Gerevini) int32_t TotalCoeffSum = 32; int32_t error, nlevel, coeff=1; uint8_t level; for (int32_t y = 0; y < head.biHeight; y++) { info.nProgress = (int32_t)(100 * y / head.biHeight); if (info.nEscape) break; for (int32_t x = 0; x < head.biWidth; x++) { level = BlindGetPixelIndex(x, y); if (level > 128) { tmp.SetPixelIndex(x, y, 1); error = level - 255; } else { tmp.SetPixelIndex(x, y, 0); error = level; } nlevel = GetPixelIndex(x + 1, y) + (error * 5) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 1, y, level); nlevel = GetPixelIndex(x + 2, y) + (error * 3) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + 2, y, level); int32_t i; for (i = -2; i < 3; i++) { switch (i) { case -2: coeff = 2; break; case -1: coeff = 4; break; case 0: coeff = 5; break; case 1: coeff = 4; break; case 2: coeff = 2; break; } nlevel = GetPixelIndex(x + i, y + 1) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 1, level); } for (i = -1; i < 2; i++) { switch (i) { case -1: coeff = 2; break; case 0: coeff = 3; break; case 1: coeff = 2; break; } nlevel = GetPixelIndex(x + i, y + 2) + (error * coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(x + i, y + 2, level); } } } break; } case 6: { //Stevenson and Arce error diffusion (Thanks to Franco Gerevini) int32_t TotalCoeffSum = 200; int32_t error, nlevel; uint8_t level; for (int32_t y = 0; y < head.biHeight; y++) { info.nProgress = (int32_t)(100 * y / head.biHeight); if (info.nEscape) break; for (int32_t x = 0; x < head.biWidth; x++) { level = BlindGetPixelIndex(x, y); if (level > 128) { tmp.SetPixelIndex(x, y, 1); error = level - 255; } else { tmp.SetPixelIndex(x, y, 0); error = level; } int32_t tmp_index_x = x + 2; int32_t tmp_index_y = y; int32_t tmp_coeff = 32; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x - 3; tmp_index_y = y + 1; tmp_coeff = 12; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x - 1; tmp_coeff = 26; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x + 1; tmp_coeff = 30; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x + 3; tmp_coeff = 16; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x - 2; tmp_index_y = y + 2; tmp_coeff = 12; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x; tmp_coeff = 26; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x + 2; tmp_coeff = 12; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x - 3; tmp_index_y = y + 3; tmp_coeff = 5; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x - 1; tmp_coeff = 12; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x + 1; tmp_coeff = 12; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); tmp_index_x = x + 3; tmp_coeff = 5; nlevel = GetPixelIndex(tmp_index_x, tmp_index_y) + (error * tmp_coeff) / TotalCoeffSum; level = (uint8_t)min(255, max(0, (int32_t)nlevel)); SetPixelIndex(tmp_index_x, tmp_index_y, level); } } break; } case 7: { // Bayer ordered dither int32_t order = 4; //create Bayer matrix if (order>4) order = 4; int32_t size = (1 << (2*order)); uint8_t* Bmatrix = (uint8_t*) malloc(size * sizeof(uint8_t)); for(int32_t i = 0; i < size; i++) { int32_t n = order; int32_t x = i / n; int32_t y = i % n; int32_t dither = 0; while (n-- > 0){ dither = (((dither<<1)|((x&1) ^ (y&1)))<<1) | (y&1); x >>= 1; y >>= 1; } Bmatrix[i] = (uint8_t)(dither); } int32_t scale = max(0,(8-2*order)); int32_t level; for (int32_t y=0;y> scale; if(level > Bmatrix[ (x % order) + order * (y % order) ]){ tmp.SetPixelIndex(x,y,1); } else { tmp.SetPixelIndex(x,y,0); } } } free(Bmatrix); break; } case 8: { // 8x8 Bayer ordered dither int32_t const pattern8x8[8][8] = { { 0, 32, 8, 40, 2, 34, 10, 42}, /* 8x8 Bayer ordered dithering */ {48, 16, 56, 24, 50, 18, 58, 26}, /* pattern. Each input pixel */ {12, 44, 4, 36, 14, 46, 6, 38}, /* is scaled to the 0..63 range */ {60, 28, 52, 20, 62, 30, 54, 22}, /* before looking in this table */ { 3, 35, 11, 43, 1, 33, 9, 41}, /* to determine the action. */ {51, 19, 59, 27, 49, 17, 57, 25}, {15, 47, 7, 39, 13, 45, 5, 37}, {63, 31, 55, 23, 61, 29, 53, 21} }; for (int32_t y=0;y> 2; if(level && level >= pattern8x8[x & 7][y & 7]){ tmp.SetPixelIndex(x,y,1); } else { tmp.SetPixelIndex(x,y,0); } } } break; } case 9: { // 16x16 Bayer ordered dither int32_t const pattern16x16[16][16] = { { 1,235, 59,219, 15,231, 55,215, 2,232, 56,216, 12,228, 52,212}, { 129, 65,187,123,143, 79,183,119,130, 66,184,120,140, 76,180,116}, { 33,193, 17,251, 47,207, 31,247, 34,194, 18,248, 44,204, 28,244}, { 161, 97,145, 81,175,111,159, 95,162, 98,146, 82,172,108,156, 92}, { 9,225, 49,209, 5,239, 63,223, 10,226, 50,210, 6,236, 60,220}, { 137, 73,177,113,133, 69,191,127,138, 74,178,114,134, 70,188,124}, { 41,201, 25,241, 37,197, 21,255, 42,202, 26,242, 38,198, 22,252}, { 169,105,153, 89,165,101,149, 85,170,106,154, 90,166,102,150, 86}, { 3,233, 57,217, 13,229, 53,213, 0,234, 58,218, 14,230, 54,214}, { 131, 67,185,121,141, 77,181,117,128, 64,186,122,142, 78,182,118}, { 35,195, 19,249, 45,205, 29,245, 32,192, 16,250, 46,206, 30,246}, { 163, 99,147, 83,173,109,157, 93,160, 96,144, 80,174,110,158, 94}, { 11,227, 51,211, 7,237, 61,221, 8,224, 48,208, 4,238, 62,222}, { 139, 75,179,115,135, 71,189,125,136, 72,176,112,132, 68,190,126}, { 43,203, 27,243, 39,199, 23,253, 40,200, 24,240, 36,196, 20,254}, { 171,107,155, 91,167,103,151, 87,168,104,152, 88,164,100,148, 84} }; for (int32_t y=0;y pattern16x16[x & 15][y & 15]){ tmp.SetPixelIndex(x,y,1); } else { tmp.SetPixelIndex(x,y,0); } } } break; } default: { // Floyd-Steinberg error diffusion (Thanks to Steve McMahon) int32_t error,nlevel,coeff=1; uint8_t level; for (int32_t y=0;y 128){ tmp.SetPixelIndex(x,y,1); error = level-255; } else { tmp.SetPixelIndex(x,y,0); error = level; } nlevel = GetPixelIndex(x+1,y) + (error * 7)/16; level = (uint8_t)min(255,max(0,(int32_t)nlevel)); SetPixelIndex(x+1,y,level); for(int32_t i=-1; i<2; i++){ switch(i){ case -1: coeff=3; break; case 0: coeff=5; break; case 1: coeff=1; break; } nlevel = GetPixelIndex(x+i,y+1) + (error * coeff)/16; level = (uint8_t)min(255,max(0,(int32_t)nlevel)); SetPixelIndex(x+i,y+1,level); } } } } } tmp.SetPaletteColor(0,0,0,0); tmp.SetPaletteColor(1,255,255,255); Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * CropRotatedRectangle * \param topx,topy : topmost and leftmost point of the rectangle (topmost, and if there are 2 topmost points, the left one) * \param width : size of the right hand side of rect, from (topx,topy) roundwalking clockwise * \param height : size of the left hand side of rect, from (topx,topy) roundwalking clockwise * \param angle : angle of the right hand side of rect, from (topx,topy) * \param iDst : pointer to destination image (if 0, this image is modified) * \author [VATI] */ bool CxImage::CropRotatedRectangle( int32_t topx, int32_t topy, int32_t width, int32_t height, float angle, CxImage* iDst) { if (!pDib) return false; int32_t startx,starty,endx,endy; double cos_angle = cos(angle/*/57.295779513082320877*/); double sin_angle = sin(angle/*/57.295779513082320877*/); // if there is nothing special, call the original Crop(): if ( fabs(angle)<0.0002 ) return Crop( topx, topy, topx+width, topy+height, iDst); startx = min(topx, topx - (int32_t)(sin_angle*(double)height)); endx = topx + (int32_t)(cos_angle*(double)width); endy = topy + (int32_t)(cos_angle*(double)height + sin_angle*(double)width); // check: corners of the rectangle must be inside if ( IsInside( startx, topy )==false || IsInside( endx, endy ) == false ) return false; // first crop to bounding rectangle CxImage tmp(*this, true, false, true); // tmp.Copy(*this, true, false, true); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } if (!tmp.Crop( startx, topy, endx, endy)){ strcpy(info.szLastError,tmp.GetLastError()); return false; } // the midpoint of the image now became the same as the midpoint of the rectangle // rotate new image with minus angle amount if ( false == tmp.Rotate( (float)(-angle*57.295779513082320877) ) ) // Rotate expects angle in degrees return false; // crop rotated image to the original selection rectangle endx = (tmp.head.biWidth+width)/2; startx = (tmp.head.biWidth-width)/2; starty = (tmp.head.biHeight+height)/2; endy = (tmp.head.biHeight-height)/2; if ( false == tmp.Crop( startx, starty, endx, endy ) ) return false; if (iDst) iDst->Transfer(tmp); else Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// bool CxImage::Crop(const RECT& rect, CxImage* iDst) { return Crop(rect.left, rect.top, rect.right, rect.bottom, iDst); } //////////////////////////////////////////////////////////////////////////////// bool CxImage::Crop(int32_t left, int32_t top, int32_t right, int32_t bottom, CxImage* iDst) { if (!pDib) return false; int32_t startx = max(0L,min(left,head.biWidth)); int32_t endx = max(0L,min(right,head.biWidth)); int32_t starty = head.biHeight - max(0L,min(top,head.biHeight)); int32_t endy = head.biHeight - max(0L,min(bottom,head.biHeight)); if (startx==endx || starty==endy) return false; if (startx>endx) {int32_t tmp=startx; startx=endx; endx=tmp;} if (starty>endy) {int32_t tmp=starty; starty=endy; endy=tmp;} CxImage tmp; tmp.CopyInfo(*this); tmp.Create(endx-startx,endy-starty,head.biBitCount,info.dwType); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } tmp.SetPalette(GetPalette(),head.biClrUsed); tmp.info.nBkgndIndex = info.nBkgndIndex; tmp.info.nBkgndColor = info.nBkgndColor; switch (head.biBitCount) { case 1: case 4: { for(int32_t y=starty, yd=0; y for(int32_t x=startx, xd=0; x> 3; uint8_t* pDest = tmp.info.pImage; uint8_t* pSrc = info.pImage + starty * info.dwEffWidth + (startx*head.biBitCount >> 3); for(int32_t y=starty; y memcpy(pDest,pSrc,linelen); pDest+=tmp.info.dwEffWidth; pSrc+=info.dwEffWidth; } } } #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()){ // tmp.AlphaCreate(); if (!tmp.AlphaIsValid()) return false; uint8_t* pDest = tmp.pAlpha; uint8_t* pSrc = pAlpha + startx + starty*head.biWidth; for (int32_t y=starty; yTransfer(tmp); else Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * \param xgain, ygain : can be from 0 to 1. * \param xpivot, ypivot : is the center of the transformation. * \param bEnableInterpolation : if true, enables bilinear interpolation. * \return true if everything is ok */ bool CxImage::Skew(float xgain, float ygain, int32_t xpivot, int32_t ypivot, bool bEnableInterpolation) { if (!pDib) return false; float nx,ny; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } int32_t xmin,xmax,ymin,ymax; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } for(int32_t y=ymin; y top) || (x < left) || (x > right)) { tmp.SetPixelIndex(x,y, pixel); } else { tmp.SetPixelIndex(x,y,GetPixelIndex(x-left,y-bottom)); } } } break; } case 8: case 24: { if (head.biBitCount == 8) { uint8_t pixel = tmp.GetNearestIndex( canvascolor); memset(tmp.info.pImage, pixel, + (tmp.info.dwEffWidth * newHeight)); } else { for (int32_t y = 0; y < newHeight; ++y) { uint8_t *pDest = tmp.info.pImage + (y * tmp.info.dwEffWidth); for (int32_t x = 0; x < newWidth; ++x) { *pDest++ = canvascolor.rgbBlue; *pDest++ = canvascolor.rgbGreen; *pDest++ = canvascolor.rgbRed; } } } uint8_t* pDest = tmp.info.pImage + (tmp.info.dwEffWidth * bottom) + (left*(head.biBitCount >> 3)); uint8_t* pSrc = info.pImage; for(int32_t y=bottom; y <= top; y++){ info.nProgress = (int32_t)(100*y/(1 + top - bottom)); memcpy(pDest,pSrc,(head.biBitCount >> 3) * (right - left + 1)); pDest+=tmp.info.dwEffWidth; pSrc+=info.dwEffWidth; } } } #if CXIMAGE_SUPPORT_SELECTION if (SelectionIsValid()){ if (!tmp.SelectionCreate()) return false; uint8_t* pSrc = SelectionGetPointer(); uint8_t* pDst = tmp.SelectionGetPointer(left,bottom); for(int32_t y=bottom; y <= top; y++){ memcpy(pDst,pSrc, (right - left + 1)); pSrc+=head.biWidth; pDst+=tmp.head.biWidth; } tmp.info.rSelectionBox.left = info.rSelectionBox.left + left; tmp.info.rSelectionBox.right = info.rSelectionBox.right + left; tmp.info.rSelectionBox.top = info.rSelectionBox.top + bottom; tmp.info.rSelectionBox.bottom = info.rSelectionBox.bottom + bottom; } #endif //CXIMAGE_SUPPORT_SELECTION #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()){ if (!tmp.AlphaCreate()) return false; tmp.AlphaSet(canvascolor.rgbReserved); uint8_t* pSrc = AlphaGetPointer(); uint8_t* pDst = tmp.AlphaGetPointer(left,bottom); for(int32_t y=bottom; y <= top; y++){ memcpy(pDst,pSrc, (right - left + 1)); pSrc+=head.biWidth; pDst+=tmp.head.biWidth; } } #endif //CXIMAGE_SUPPORT_ALPHA //select the destination if (iDst) iDst->Transfer(tmp); else Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// bool CxImage::Expand(int32_t newx, int32_t newy, RGBQUAD canvascolor, CxImage* iDst) { //thanks to if (!pDib) return false; if ((newx < head.biWidth) || (newy < head.biHeight)) return false; int32_t nAddLeft = (newx - head.biWidth) / 2; int32_t nAddTop = (newy - head.biHeight) / 2; return Expand(nAddLeft, nAddTop, newx - (head.biWidth + nAddLeft), newy - (head.biHeight + nAddTop), canvascolor, iDst); } //////////////////////////////////////////////////////////////////////////////// /** * Resamples the image with the correct aspect ratio, and fills the borders. * \param newx, newy = thumbnail size. * \param canvascolor = border color. * \param iDst = pointer to destination image (if it's 0, this image is modified). * \return true if everything is ok. * \author [Colin Urquhart] */ bool CxImage::Thumbnail(int32_t newx, int32_t newy, RGBQUAD canvascolor, CxImage* iDst) { if (!pDib) return false; if ((newx <= 0) || (newy <= 0)) return false; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } // determine whether we need to shrink the image if ((head.biWidth > newx) || (head.biHeight > newy)) { float fScale; float fAspect = (float) newx / (float) newy; if (fAspect * head.biHeight > head.biWidth) { fScale = (float) newy / head.biHeight; } else { fScale = (float) newx / head.biWidth; } tmp.Resample((int32_t) (fScale * head.biWidth), (int32_t) (fScale * head.biHeight), 0); } // expand the frame tmp.Expand(newx, newy, canvascolor); //select the destination if (iDst) iDst->Transfer(tmp); else Transfer(tmp); return true; } //////////////////////////////////////////////////////////////////////////////// /** * Perform circle_based transformations. * \param type - for different transformations * - 0 for normal (proturberant) FishEye * - 1 for reverse (concave) FishEye * - 2 for Swirle * - 3 for Cilinder mirror * - 4 for bathroom * * \param rmax - effect radius. If 0, the whole image is processed * \param Koeff - only for swirle * \author Arkadiy Olovyannikov ark(at)msun(dot)ru */ bool CxImage::CircleTransform(int32_t type,int32_t rmax,float Koeff) { if (!pDib) return false; int32_t nx,ny; double angle,radius,rnew; CxImage tmp(*this); if (!tmp.IsValid()){ strcpy(info.szLastError,tmp.GetLastError()); return false; } int32_t xmin,xmax,ymin,ymax,xmid,ymid; if (pSelection){ xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right; ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top; } else { xmin = ymin = 0; xmax = head.biWidth; ymax=head.biHeight; } xmid = (int32_t) (tmp.GetWidth()/2); ymid = (int32_t) (tmp.GetHeight()/2); if (!rmax) rmax=(int32_t)sqrt((float)((xmid-xmin)*(xmid-xmin)+(ymid-ymin)*(ymid-ymin))); if (Koeff==0.0f) Koeff=1.0f; for(int32_t y=ymin; yhead.biWidth || newy>head.biHeight) { //let me repeat... this method can't enlarge image strcpy(info.szLastError,"QIShrink can't enlarge image"); return false; } if (newx==head.biWidth && newy==head.biHeight) { //image already correct size (just copy and return) if (iDst) iDst->Copy(*this); return true; }//if //create temporary destination image CxImage newImage; newImage.CopyInfo(*this); newImage.Create(newx,newy,(bChangeBpp)?24:head.biBitCount,GetType()); newImage.SetPalette(GetPalette()); if (!newImage.IsValid()){ strcpy(info.szLastError,newImage.GetLastError()); return false; } //and alpha channel if required #if CXIMAGE_SUPPORT_ALPHA if (AlphaIsValid()) newImage.AlphaCreate(); #endif const int32_t oldx = head.biWidth; const int32_t oldy = head.biHeight; int32_t accuCellSize = 4; #if CXIMAGE_SUPPORT_ALPHA uint8_t *alphaPtr; if (AlphaIsValid()) accuCellSize=5; #endif uint32_t *accu = new uint32_t[newx*accuCellSize]; //array for suming pixels... one pixel for every destination column uint32_t *accuPtr; //pointer for walking through accu //each cell consists of blue, red, green component and count of pixels summed in this cell memset(accu, 0, newx * accuCellSize * sizeof(uint32_t)); //clear accu if (!IsIndexed()) { //RGB24 version with pointers uint8_t *destPtr, *srcPtr, *destPtrS, *srcPtrS; //destination and source pixel, and beginnings of current row srcPtrS=(uint8_t*)BlindGetPixelPointer(0,0); destPtrS=(uint8_t*)newImage.BlindGetPixelPointer(0,0); int32_t ex=0, ey=0; //ex and ey replace division... int32_t dy=0; //(we just add pixels, until by adding newx or newy we get a number greater than old size... then // it's time to move to next pixel) for(int32_t y=0; yoldx) { //when we reach oldx, it's time to move to new slot accuPtr += accuCellSize; ex -= oldx; //(substract oldx from ex and resume from there on) }//if (ex overflow) }//for x if (ey>=oldy) { //now when this happens ey -= oldy; //it's time to move to new destination row destPtr = destPtrS; //reset pointers to proper initial values accuPtr = accu; #if CXIMAGE_SUPPORT_ALPHA alphaPtr = newImage.AlphaGetPointer(0, dy++); #endif for (int32_t k=0; koldx) { //when we reach oldx, it's time to move to new slot accuPtr += accuCellSize; ex -= oldx; //(substract oldx from ex and resume from there on) }//if (ex overflow) }//for x if (ey>=oldy) { //now when this happens ey -= oldy; //it's time to move to new destination row accuPtr = accu; for (int32_t dx=0; dxTransfer(newImage); else Transfer(newImage); return true; } //////////////////////////////////////////////////////////////////////////////// #endif //CXIMAGE_SUPPORT_TRANSFORMATION