//Chris Xiong 2022 //License: MPL-2.0 #include #include #include #include #include //#include #include #include "imageutil.hpp" //libpuzzle uses a contrast-based cropping, and clamps the cropped area to a given percentage. cv::Range image_util::crop_axis(cv::InputArray s, int axis, double contrast_threshold, double max_crop_ratio) { //axis: 0=x (returns range of columns), 1=y (returns range of rows) //input matrix must be continuous cv::Mat m = s.getMat(); cv::Size sz = m.size(); if (axis == 0) sz = cv::Size(m.rows, m.cols); int innerstride = axis == 0 ? m.cols : 1; int outerstride = axis == 0 ? 1 - m.cols * m.rows : 0; std::vector contrs; const float *data = m.ptr(0); const float *dp = data; double total_contr = 0.; for (int i = 0; i < sz.height; ++i) { double accum = 0.; float lastv = *data; for (int j = 0 ; j < sz.width; ++j) { data += innerstride; //printf("%d %d\n", (data - dp) / m.cols, (data - dp) % m.cols); if (data - dp >= sz.height * sz.width) break; accum += fabsf(*data - lastv); lastv = *data; } //printf("---\n"); data += outerstride; contrs.push_back(accum); total_contr += accum; } //printf("======\n"); //for (size_t i = 0; i < contrs.size(); ++i) printf("%.4f ",contrs[i]/total_contr); //printf("\n%f====\n",total_contr); double realth = total_contr * contrast_threshold; int l = 0, r = sz.height - 1; total_contr = 0; for (; l < sz.height; ++l) { total_contr += contrs[l]; if (total_contr >= realth) break; } total_contr = 0; for (; r > 0; --r) { total_contr += contrs[r]; if (total_contr >= realth) break; } int crop_max = (int)round(sz.height * max_crop_ratio); return cv::Range(std::min(l, crop_max), std::max(r, sz.height - 1 - crop_max) + 1); } cv::Mat image_util::crop(cv::InputArray s, double contrast_threshold, double max_crop_ratio) { //input matrix must be continuous cv::Range xr = crop_axis(s, 0, contrast_threshold, max_crop_ratio); cv::Range yr = crop_axis(s, 1, contrast_threshold, max_crop_ratio); //printf("%d,%d %d,%d\n",yr.start,yr.end,xr.start,xr.end); return s.getMat()(yr, xr); } double image_util::median(std::vector &v) { if (v.empty()) return std::numeric_limits::quiet_NaN(); if (v.size() % 2) { int m = v.size() / 2; std::vector::iterator mt = v.begin() + m; std::nth_element(v.begin(), mt, v.end()); return *mt; } else { int m = v.size() / 2; int n = m - 1; std::vector::iterator mt, nt; mt = v.begin() + m; nt = v.begin() + n; std::nth_element(v.begin(), mt, v.end()); std::nth_element(v.begin(), nt, v.end()); return (*mt + *nt) / 2.; } } cv::Mat image_util::blend_white(cv::Mat m) { //input must be a continuous, CV_32FC4 matrix cv::Mat ret; ret.create(m.size(), CV_32FC3); size_t p = m.size().width * m.size().height; float *d = m.ptr(0); float *o = ret.ptr(0); for (size_t i = 0; i < p; ++i) { float a = d[3]; o[0] = d[0] * a + (1. - a); o[1] = d[1] * a + (1. - a); o[2] = d[2] * a + (1. - a); d += 4; o += 3; } return ret; } cv::Mat image_util::imread_path(const std::filesystem::path &p, int flags) { auto size = std::filesystem::file_size(p); std::fstream fst(p, std::ios::binary | std::ios::in); std::vector dat; dat.resize(size); fst.read(dat.data(), size); fst.close(); cv::Mat img = cv::imdecode(dat, flags); return img; }