"use strict"; (function(root) { var MAX_VALUE = 0x7fffffff; // The SHA256 and PBKDF2 implementation are from scrypt-async-js: // See: https://github.com/dchest/scrypt-async-js function SHA256(m) { var K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]; var h0 = 0x6a09e667, h1 = 0xbb67ae85, h2 = 0x3c6ef372, h3 = 0xa54ff53a; var h4 = 0x510e527f, h5 = 0x9b05688c, h6 = 0x1f83d9ab, h7 = 0x5be0cd19; var w = new Array(64); function blocks(p) { var off = 0, len = p.length; while (len >= 64) { var a = h0, b = h1, c = h2, d = h3, e = h4, f = h5, g = h6, h = h7, u, i, j, t1, t2; for (i = 0; i < 16; i++) { j = off + i*4; w[i] = ((p[j] & 0xff)<<24) | ((p[j+1] & 0xff)<<16) | ((p[j+2] & 0xff)<<8) | (p[j+3] & 0xff); } for (i = 16; i < 64; i++) { u = w[i-2]; t1 = ((u>>>17) | (u<<(32-17))) ^ ((u>>>19) | (u<<(32-19))) ^ (u>>>10); u = w[i-15]; t2 = ((u>>>7) | (u<<(32-7))) ^ ((u>>>18) | (u<<(32-18))) ^ (u>>>3); w[i] = (((t1 + w[i-7]) | 0) + ((t2 + w[i-16]) | 0)) | 0; } for (i = 0; i < 64; i++) { t1 = ((((((e>>>6) | (e<<(32-6))) ^ ((e>>>11) | (e<<(32-11))) ^ ((e>>>25) | (e<<(32-25)))) + ((e & f) ^ (~e & g))) | 0) + ((h + ((K[i] + w[i]) | 0)) | 0)) | 0; t2 = ((((a>>>2) | (a<<(32-2))) ^ ((a>>>13) | (a<<(32-13))) ^ ((a>>>22) | (a<<(32-22)))) + ((a & b) ^ (a & c) ^ (b & c))) | 0; h = g; g = f; f = e; e = (d + t1) | 0; d = c; c = b; b = a; a = (t1 + t2) | 0; } h0 = (h0 + a) | 0; h1 = (h1 + b) | 0; h2 = (h2 + c) | 0; h3 = (h3 + d) | 0; h4 = (h4 + e) | 0; h5 = (h5 + f) | 0; h6 = (h6 + g) | 0; h7 = (h7 + h) | 0; off += 64; len -= 64; } } blocks(m); var i, bytesLeft = m.length % 64, bitLenHi = (m.length / 0x20000000) | 0, bitLenLo = m.length << 3, numZeros = (bytesLeft < 56) ? 56 : 120, p = m.slice(m.length - bytesLeft, m.length); p.push(0x80); for (i = bytesLeft + 1; i < numZeros; i++) { p.push(0); } p.push((bitLenHi>>>24) & 0xff); p.push((bitLenHi>>>16) & 0xff); p.push((bitLenHi>>>8) & 0xff); p.push((bitLenHi>>>0) & 0xff); p.push((bitLenLo>>>24) & 0xff); p.push((bitLenLo>>>16) & 0xff); p.push((bitLenLo>>>8) & 0xff); p.push((bitLenLo>>>0) & 0xff); blocks(p); return [ (h0>>>24) & 0xff, (h0>>>16) & 0xff, (h0>>>8) & 0xff, (h0>>>0) & 0xff, (h1>>>24) & 0xff, (h1>>>16) & 0xff, (h1>>>8) & 0xff, (h1>>>0) & 0xff, (h2>>>24) & 0xff, (h2>>>16) & 0xff, (h2>>>8) & 0xff, (h2>>>0) & 0xff, (h3>>>24) & 0xff, (h3>>>16) & 0xff, (h3>>>8) & 0xff, (h3>>>0) & 0xff, (h4>>>24) & 0xff, (h4>>>16) & 0xff, (h4>>>8) & 0xff, (h4>>>0) & 0xff, (h5>>>24) & 0xff, (h5>>>16) & 0xff, (h5>>>8) & 0xff, (h5>>>0) & 0xff, (h6>>>24) & 0xff, (h6>>>16) & 0xff, (h6>>>8) & 0xff, (h6>>>0) & 0xff, (h7>>>24) & 0xff, (h7>>>16) & 0xff, (h7>>>8) & 0xff, (h7>>>0) & 0xff ]; } function PBKDF2_HMAC_SHA256_OneIter(password, salt, dkLen) { // compress password if it's longer than hash block length password = password.length <= 64 ? password : SHA256(password); var i; var innerLen = 64 + salt.length + 4; var inner = new Array(innerLen); var outerKey = new Array(64); var dk = []; // inner = (password ^ ipad) || salt || counter for (i = 0; i < 64; i++) inner[i] = 0x36; for (i = 0; i < password.length; i++) inner[i] ^= password[i]; for (i = 0; i < salt.length; i++) inner[64+i] = salt[i]; for (i = innerLen - 4; i < innerLen; i++) inner[i] = 0; // outerKey = password ^ opad for (i = 0; i < 64; i++) outerKey[i] = 0x5c; for (i = 0; i < password.length; i++) outerKey[i] ^= password[i]; // increments counter inside inner function incrementCounter() { for (var i = innerLen-1; i >= innerLen-4; i--) { inner[i]++; if (inner[i] <= 0xff) return; inner[i] = 0; } } // output blocks = SHA256(outerKey || SHA256(inner)) ... while (dkLen >= 32) { incrementCounter(); dk = dk.concat(SHA256(outerKey.concat(SHA256(inner)))); dkLen -= 32; } if (dkLen > 0) { incrementCounter(); dk = dk.concat(SHA256(outerKey.concat(SHA256(inner))).slice(0, dkLen)); } return dk; } // The following is an adaptation of scryptsy // See: https://www.npmjs.com/package/scryptsy function blockmix_salsa8(BY, Yi, r, x, _X) { var i; arraycopy(BY, (2 * r - 1) * 16, _X, 0, 16); for (i = 0; i < 2 * r; i++) { blockxor(BY, i * 16, _X, 16); salsa20_8(_X, x); arraycopy(_X, 0, BY, Yi + (i * 16), 16); } for (i = 0; i < r; i++) { arraycopy(BY, Yi + (i * 2) * 16, BY, (i * 16), 16); } for (i = 0; i < r; i++) { arraycopy(BY, Yi + (i * 2 + 1) * 16, BY, (i + r) * 16, 16); } } function R(a, b) { return (a << b) | (a >>> (32 - b)); } function salsa20_8(B, x) { arraycopy(B, 0, x, 0, 16); for (var i = 8; i > 0; i -= 2) { x[ 4] ^= R(x[ 0] + x[12], 7); x[ 8] ^= R(x[ 4] + x[ 0], 9); x[12] ^= R(x[ 8] + x[ 4], 13); x[ 0] ^= R(x[12] + x[ 8], 18); x[ 9] ^= R(x[ 5] + x[ 1], 7); x[13] ^= R(x[ 9] + x[ 5], 9); x[ 1] ^= R(x[13] + x[ 9], 13); x[ 5] ^= R(x[ 1] + x[13], 18); x[14] ^= R(x[10] + x[ 6], 7); x[ 2] ^= R(x[14] + x[10], 9); x[ 6] ^= R(x[ 2] + x[14], 13); x[10] ^= R(x[ 6] + x[ 2], 18); x[ 3] ^= R(x[15] + x[11], 7); x[ 7] ^= R(x[ 3] + x[15], 9); x[11] ^= R(x[ 7] + x[ 3], 13); x[15] ^= R(x[11] + x[ 7], 18); x[ 1] ^= R(x[ 0] + x[ 3], 7); x[ 2] ^= R(x[ 1] + x[ 0], 9); x[ 3] ^= R(x[ 2] + x[ 1], 13); x[ 0] ^= R(x[ 3] + x[ 2], 18); x[ 6] ^= R(x[ 5] + x[ 4], 7); x[ 7] ^= R(x[ 6] + x[ 5], 9); x[ 4] ^= R(x[ 7] + x[ 6], 13); x[ 5] ^= R(x[ 4] + x[ 7], 18); x[11] ^= R(x[10] + x[ 9], 7); x[ 8] ^= R(x[11] + x[10], 9); x[ 9] ^= R(x[ 8] + x[11], 13); x[10] ^= R(x[ 9] + x[ 8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); } for (i = 0; i < 16; ++i) { B[i] += x[i]; } } // naive approach... going back to loop unrolling may yield additional performance function blockxor(S, Si, D, len) { for (var i = 0; i < len; i++) { D[i] ^= S[Si + i] } } function arraycopy(src, srcPos, dest, destPos, length) { while (length--) { dest[destPos++] = src[srcPos++]; } } function checkBufferish(o) { if (!o || typeof(o.length) !== 'number') { return false; } for (var i = 0; i < o.length; i++) { if (typeof(o[i]) !== 'number') { return false; } var v = parseInt(o[i]); if (v != o[i] || v < 0 || v >= 256) { return false; } } return true; } function ensureInteger(value, name) { var intValue = parseInt(value); if (value != intValue) { throw new Error('invalid ' + name); } return intValue; } // N = Cpu cost, r = Memory cost, p = parallelization cost // callback(error, progress, key) function scrypt(password, salt, N, r, p, dkLen, callback) { if (!callback) { throw new Error('missing callback'); } N = ensureInteger(N, 'N'); r = ensureInteger(r, 'r'); p = ensureInteger(p, 'p'); dkLen = ensureInteger(dkLen, 'dkLen'); if (N === 0 || (N & (N - 1)) !== 0) { throw new Error('N must be power of 2'); } if (N > MAX_VALUE / 128 / r) { throw new Error('N too large'); } if (r > MAX_VALUE / 128 / p) { throw new Error('r too large'); } if (!checkBufferish(password)) { throw new Error('password must be an array or buffer'); } if (!checkBufferish(salt)) { throw new Error('salt must be an array or buffer'); } var b = PBKDF2_HMAC_SHA256_OneIter(password, salt, p * 128 * r); var B = new Uint32Array(p * 32 * r) for (var i = 0; i < B.length; i++) { var j = i * 4; B[i] = ((b[j + 3] & 0xff) << 24) | ((b[j + 2] & 0xff) << 16) | ((b[j + 1] & 0xff) << 8) | ((b[j + 0] & 0xff) << 0); } var XY = new Uint32Array(64 * r); var V = new Uint32Array(32 * r * N); var Yi = 32 * r; // scratch space var x = new Uint32Array(16); // salsa20_8 var _X = new Uint32Array(16); // blockmix_salsa8 var totalOps = p * N * 2; var currentOp = 0; var lastPercent10 = null; // Set this to true to abandon the scrypt on the next step var stop = false; // State information var state = 0; var i0 = 0, i1; var Bi; // How many blockmix_salsa8 can we do per step? var limit = parseInt(1000 / r); // Trick from scrypt-async; if there is a setImmediate shim in place, use it var nextTick = (typeof(setImmediate) !== 'undefined') ? setImmediate : setTimeout; // This is really all I changed; making scryptsy a state machine so we occasionally // stop and give other evnts on the evnt loop a chance to run. ~RicMoo var incrementalSMix = function() { if (stop) { return callback(new Error('cancelled'), currentOp / totalOps); } switch (state) { case 0: // for (var i = 0; i < p; i++)... Bi = i0 * 32 * r; arraycopy(B, Bi, XY, 0, Yi); // ROMix - 1 state = 1; // Move to ROMix 2 i1 = 0; // Fall through case 1: // Run up to 1000 steps of the first inner smix loop var steps = N - i1; if (steps > limit) { steps = limit; } for (var i = 0; i < steps; i++) { // ROMix - 2 arraycopy(XY, 0, V, (i1 + i) * Yi, Yi) // ROMix - 3 blockmix_salsa8(XY, Yi, r, x, _X); // ROMix - 4 } // for (var i = 0; i < N; i++) i1 += steps; currentOp += steps; // Call the callback with the progress (optionally stopping us) var percent10 = parseInt(1000 * currentOp / totalOps); if (percent10 !== lastPercent10) { stop = callback(null, currentOp / totalOps); if (stop) { break; } lastPercent10 = percent10; } if (i1 < N) { break; } i1 = 0; // Move to ROMix 6 state = 2; // Fall through case 2: // Run up to 1000 steps of the second inner smix loop var steps = N - i1; if (steps > limit) { steps = limit; } for (var i = 0; i < steps; i++) { // ROMix - 6 var offset = (2 * r - 1) * 16; // ROMix - 7 var j = XY[offset] & (N - 1); blockxor(V, j * Yi, XY, Yi); // ROMix - 8 (inner) blockmix_salsa8(XY, Yi, r, x, _X); // ROMix - 9 (outer) } // for (var i = 0; i < N; i++)... i1 += steps; currentOp += steps; // Call the callback with the progress (optionally stopping us) var percent10 = parseInt(1000 * currentOp / totalOps); if (percent10 !== lastPercent10) { stop = callback(null, currentOp / totalOps); if (stop) { break; } lastPercent10 = percent10; } if (i1 < N) { break; } arraycopy(XY, 0, B, Bi, Yi); // ROMix - 10 // for (var i = 0; i < p; i++)... i0++; if (i0 < p) { state = 0; break; } b = []; for (var i = 0; i < B.length; i++) { b.push((B[i] >> 0) & 0xff); b.push((B[i] >> 8) & 0xff); b.push((B[i] >> 16) & 0xff); b.push((B[i] >> 24) & 0xff); } var derivedKey = PBKDF2_HMAC_SHA256_OneIter(password, b, dkLen); // Done; don't break (which would reschedule) return callback(null, 1.0, derivedKey); } // Schedule the next steps nextTick(incrementalSMix); } // Bootstrap the incremental smix incrementalSMix(); } // node.js if (typeof(exports) !== 'undefined') { module.exports = scrypt; // RequireJS/AMD // http://www.requirejs.org/docs/api.html // https://github.com/amdjs/amdjs-api/wiki/AMD } else if (typeof(define) === 'function' && define.amd) { define(scrypt); // Web Browsers } else if (root) { // If there was an existing library "scrypt", make sure it is still available if (root.scrypt) { root._scrypt = root.scrypt; } root.scrypt = scrypt; } })(this);