/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* SHA-256 (FIPS 180-4) implementation in JavaScript (c) Chris Veness 2002-2017 */ /* MIT Licence */ /* www.movable-type.co.uk/scripts/sha256.html */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 'use strict'; /** * SHA-256 hash function reference implementation. * * This is an annotated direct implementation of FIPS 180-4, without any optimisations. It is * intended to aid understanding of the algorithm rather than for production use. * * While it could be used where performance is not critical, I would recommend using the ‘Web * Cryptography API’ (developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/digest) for the browser, * or the ‘crypto’ library (nodejs.org/api/crypto.html#crypto_class_hash) in Node.js. * * See csrc.nist.gov/groups/ST/toolkit/secure_hashing.html * csrc.nist.gov/groups/ST/toolkit/examples.html */ class Sha256 { /** * Generates SHA-256 hash of string. * * @param {string} msg - (Unicode) string to be hashed. * @param {Object} [options] * @param {string} [options.msgFormat=string] - Message format: 'string' for JavaScript string * (gets converted to UTF-8 for hashing); 'hex-bytes' for string of hex bytes ('616263' ≡ 'abc') . * @param {string} [options.outFormat=hex] - Output format: 'hex' for string of contiguous * hex bytes; 'hex-w' for grouping hex bytes into groups of (4 byte / 8 character) words. * @returns {string} Hash of msg as hex character string. */ static hash(msg, options) { const defaults = { msgFormat: 'string', outFormat: 'hex' }; const opt = Object.assign(defaults, options); // note use throughout this routine of 'n >>> 0' to coerce Number 'n' to unsigned 32-bit integer switch (opt.msgFormat) { default: // default is to convert string to UTF-8, as SHA only deals with byte-streams case 'string': msg = utf8Encode(msg); break; case 'hex-bytes':msg = hexBytesToString(msg); break; // mostly for running tests } // constants [§4.2.2] const K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]; // initial hash value [§5.3.3] const H = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]; // PREPROCESSING [§6.2.1] msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1] // convert string msg into 512-bit blocks (array of 16 32-bit integers) [§5.2.1] const l = msg.length/4 + 2; // length (in 32-bit integers) of msg + ‘1’ + appended length const N = Math.ceil(l/16); // number of 16-integer (512-bit) blocks required to hold 'l' ints const M = new Array(N); // message M is N×16 array of 32-bit integers for (let i=0; i>> 32, but since JS converts // bitwise-op args to 32 bits, we need to simulate this by arithmetic operators const lenHi = ((msg.length-1)*8) / Math.pow(2, 32); const lenLo = ((msg.length-1)*8) >>> 0; M[N-1][14] = Math.floor(lenHi); M[N-1][15] = lenLo; // HASH COMPUTATION [§6.2.2] for (let i=0; i>> 0; } // 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value let a = H[0], b = H[1], c = H[2], d = H[3], e = H[4], f = H[5], g = H[6], h = H[7]; // 3 - main loop (note '>>> 0' for 'addition modulo 2^32') for (let t=0; t<64; t++) { const T1 = h + Sha256.Σ1(e) + Sha256.Ch(e, f, g) + K[t] + W[t]; const T2 = Sha256.Σ0(a) + Sha256.Maj(a, b, c); h = g; g = f; f = e; e = (d + T1) >>> 0; d = c; c = b; b = a; a = (T1 + T2) >>> 0; } // 4 - compute the new intermediate hash value (note '>>> 0' for 'addition modulo 2^32') H[0] = (H[0]+a) >>> 0; H[1] = (H[1]+b) >>> 0; H[2] = (H[2]+c) >>> 0; H[3] = (H[3]+d) >>> 0; H[4] = (H[4]+e) >>> 0; H[5] = (H[5]+f) >>> 0; H[6] = (H[6]+g) >>> 0; H[7] = (H[7]+h) >>> 0; } // convert H0..H7 to hex strings (with leading zeros) for (let h=0; h prev + String.fromCharCode(curr), ''); } catch (e) { // no TextEncoder available? return unescape(encodeURIComponent(str)); // monsur.hossa.in/2012/07/20/utf-8-in-javascript.html } } function hexBytesToString(hexStr) { // convert string of hex numbers to a string of chars (eg '616263' -> 'abc'). const str = hexStr.replace(' ', ''); // allow space-separated groups return str=='' ? '' : str.match(/.{2}/g).map(byte => String.fromCharCode(parseInt(byte, 16))).join(''); } } /** * Rotates right (circular right shift) value x by n positions [§3.2.4]. * @private */ static ROTR(n, x) { return (x >>> n) | (x << (32-n)); } /** * Logical functions [§4.1.2]. * @private */ static Σ0(x) { return Sha256.ROTR(2, x) ^ Sha256.ROTR(13, x) ^ Sha256.ROTR(22, x); } static Σ1(x) { return Sha256.ROTR(6, x) ^ Sha256.ROTR(11, x) ^ Sha256.ROTR(25, x); } static σ0(x) { return Sha256.ROTR(7, x) ^ Sha256.ROTR(18, x) ^ (x>>>3); } static σ1(x) { return Sha256.ROTR(17, x) ^ Sha256.ROTR(19, x) ^ (x>>>10); } static Ch(x, y, z) { return (x & y) ^ (~x & z); } // 'choice' static Maj(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); } // 'majority' }