[FEES T
—— AT A A

Chris Xiong

2017-07-21

Chris Xiong [5nEE 7%

[FNEES T8

Outline

R
dp: d(ui)p(ai)

dp: Knapsack problem
LA AN S Z A fRT BB TRA A

v

v

v

v

[JniEss 7%)

> EURRFRIA B R KB E 1157

Chris Xiong [5niEE T

> EURRFRIA B R KB E 1157
> fHae AE?

Chris Xiong [5niEE T

> EURRFRIA B R KB E 1157
» 47 RHE?
» AEICE BRI A MY

[JniEss 7%)

> EIRIRVFRIN B KK E T 757
> A2 AE?

» BRI IRV 2057

» A Water Problem

Chris Xiong [5niEE 7%

> EIRIRVFRIN B KK E T 757
> A2 AE?

» BRI IRV 2057

» A Water Problem

=

a x=0
f(x+1)=<b x=1
f(x)+ f(x —1) +sin(%) otherwise

XTT@%?EE’J‘; b,n, Kf(n). n<10'8.
> LRSS PP BB] -

Chris Xiong [5niEE 7%

Rl

BLFE, BARAZW?

> EREFE A
SIAERE(1149901132) 00:19:51
gg BEF(

Chris Xiong

Rl

BLFE, BARAZW?

> EREFE A
SIAERE(1149901132) 00:19:51
gg BEF(

> R

Chris Xiong

Rl

BLFE, BARAZW?

> EREFE A
SIAERE(1149901132) 00:19:51
gg BEF(

> TXE'E/?—?: Jﬁ,ﬂ;ﬁ' !

Chris Xiong

Rl

BLFE, BARAZW?

> EREFE A
BUBE(1149901132) 00:19:51
gg BEF(
> TXE'E/?—?: Jﬁ,ﬂ;ﬁ' !

> A HITERL A A
A EIES

¥
({RE (REATLIENFRGHR —RAIRT > >

> (IriiRAEERY JEBUCHL)

Chris Xiong [5niEE 7%

d(ui)p(ai)

» WTF is duipai?

Chris Xiong [niEss 7%

d(ui)p(ai)

» WTF is duipai?

» Automated generation of test data and execution of several programs.

Chris Xiong [niEss 7%

d(ui)p(ai)

» WTF is duipai?
» Automated generation of test data and execution of several programs.

» And most importantly, compare their results.

Chris Xiong [niEss 7%

d(ui)p(ai)

v

WTF is duipai?

Automated generation of test data and execution of several programs.

v

v

And most importantly, compare their results.

A " "

Chris Xiong [niEss 7%

A sample script for UNIX-like OS

#!/bin/bash
i=0
while(true)
do
./170312cgen > test.in
./170312ca < test.in > aa.out
./170312cb < test.in > bb.out
diff aa.out bb.out
if [$7? -ne 0]
then
break
fi
echo $i passed
let i++
done

Chris Xiong [niEss 7%

How to use it?

v

Modify the script to your needs.

v

Save it as a script, e.g.: "xxx.sh”.

Give it the permission to execute. Run chmod +x <your_script_name_here> in

v

a terminal.

v

Run it! Type ./<your_script_name_here> in a terminal.

Chris Xiong [niEss 7%

What does this script do?

v

Run the input generator.

v

Feed the generated input to the compared program A and gather results from it.

v

Do the same thing with program B.

v

Check the output. If they differ, terminate the script. Otherwise loop.

Chris Xiong [niEss 7%

Explanation

» while(true)
do
done
break
> > <
redirection
> if
then
fi
$7
[, —ne

» Verification: diff / custom program

Chris Xiong [niEss 7%

Alternative approaches

v

Write a C/C++ program instead of a shell script?
system() in stdlib.h (cstdlib)
return value of system()

Windows batch file:
» IF %ERRORLEVELJ, EQU 0(GOTO :loop)

- Powershell?

v

v

v

Chris Xiong [niEss 7%

Writing input generators

» Random?

» Constructed special cases?

Chris Xiong [5nEE 7%

Knapsack problem
| suck at this

v

Unbounded knapsack problem

v

Bounded knapsack problem
» 0/1 knapsack problem

v

NP-complete!

v

A No-Dynamic-Programming-At-All variant

Chris Xiong [niEss 7%

Knapsack problem
The No-DP-At-All variant

Fractional knapsack problem (a.k.a. Continuous knapsack problem)
» A knapsack of capacity W.
> N items, each having its weight w; and value per unit weight v;.
> Select an amount x; of each item so that the total weight doesn’t exceed the
capacity (Zx,- < W) and maximizing the total value Zx,- X vj, where

1

i
xi € R, x; > 0.

Chris Xiong [niEss 7%

Knapsack problem
The No-DP-At-All variant

Fractional knapsack problem (a.k.a. Continuous knapsack problem)

>

>

>

A knapsack of capacity W.
N items, each having its weight w; and value per unit weight v;.
Select an amount x; of each item so that the total weight doesn't exceed the

capacity (Zx,- < W) and maximizing the total value Zx,- X vj, where

1

i
xi € R, x; > 0.
Greedy.

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

» Still a knapsack of capacity W.
» Still N items, each having its weight w; and value v;.

» For each item, determine whether to put it in the knapsack so that the total
weight doesn't exceed the capacity and the total value is maximum.

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem
A brute-force solution:

def dfs(i,remaining_capacity):
if(i==0): return O;
if (remaining_capacity<0):
return -inf;
ri=dfs(i-1,remaining_capacity);
r2=dfs(i-1,remaining_capacity-wl[i])+v[i];
return max(ril,r2);

v

Call dfs(N,W) for answer.

Each non-trivial invocation of dfs branch into two paths.

Time complexity: O(2").

A minor optimization: replace the second condition statement with

if (remaining_capacity<w[i]): return dfs(i-1,remaining_capacity);

v

v

v

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

A effective optimization: memoization.

f=[[-1 for i in range(N)] for j in range(W)]
def dfs(i,remaining_capacity):
if(i==0): return O;
if (remaining_capacity<w[i]):
return dfs(i-1,remaining_capacity);
if (£ [i] [remaining_capacity]!=-1):
return f[i] [remaining_capacity];
f[i] [remaining_ capacity]=max(
dfs(i-1,remaining_capacity),
dfs(i-1,remaining capacity-w[i])+v[i]);
return f[i] [remaining_capacity];

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

» For each parameter tuple of dfs, the function may only branch once.
» Time complexity: O(NW).

It's a pseudo-polynomial algorithm, so the knapsack problem is still NP-complete.

Chris Xiong [5niEE 7%

Knapsack problem
0/1 knapsack problem

» For each parameter tuple of dfs, the function may only branch once.
» Time complexity: O(NW).
It's a pseudo-polynomial algorithm, so the knapsack problem is still NP-complete.

» Why does this work?

Chris Xiong [5niEE 7%

Knapsack problem
0/1 knapsack problem

v

For each parameter tuple of dfs, the function may only branch once.
» Time complexity: O(NW).

It's a pseudo-polynomial algorithm, so the knapsack problem is still NP-complete.
» Why does this work?

» Once the result for a specific parameter tuple has been calculated, will it change
any further?

» Non-aftereffect property.

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

v

For each parameter tuple of dfs, the function may only branch once.
» Time complexity: O(NW).
It's a pseudo-polynomial algorithm, so the knapsack problem is still NP-complete.

» Why does this work?

» Once the result for a specific parameter tuple has been calculated, will it change
any further?

» Non-aftereffect property.

» Recursion? Phooey! That will be a lot of context switches!

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

v

For each parameter tuple of dfs, the function may only branch once.
» Time complexity: O(NW).

It's a pseudo-polynomial algorithm, so the knapsack problem is still NP-complete.
» Why does this work?

» Once the result for a specific parameter tuple has been calculated, will it change
any further?

» Non-aftereffect property.
» Recursion? Phooey! That will be a lot of context switches!

» Time for some black magic!

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

The iteration version.

f=[[0 for i in xrange(N)] for j in xrange(W)]
for i in xrange(1,N):
for j in xrange(0,W):
flil [jl1=max(f[i-1][j],
fli-1] [j-wl[il]+v[i] if j>=w[i] else 0);

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

» Recall that in the memoization version, in order to calculate results for
f[i, remaining _capacity] we must already have at least two results for f[i — 1, x].

» Why don't we calculate all f[i — 1, x] before calculating f[i, x]?

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

» Recall that in the memoization version, in order to calculate results for
f[i, remaining _capacity] we must already have at least two results for f[i — 1, x].

» Why don't we calculate all f[i — 1, x] before calculating f[i, x]?
» Got the maximum value now! Want the list of selected items?

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

Recall that in the memoization version, in order to calculate results for
f[i, remaining _capacity] we must already have at least two results for f[i — 1, x].

v

v

Why don't we calculate all f[i — 1, x| before calculating f{i, x]?

Got the maximum value now! Want the list of selected items?

v

Traceback.

v

Chris Xiong [niEss 7%

Knapsack problem
0/1 knapsack problem

» When we are at i = x of the outer loop, all values in f[y],y < x — 1 are no longer
used.

> If we don't need to traceback, can we save a bit of memory?

Chris Xiong [g 7%

Knapsack problem
0/1 knapsack problem

» When we are at i = x of the outer loop, all values in f[y],y < x — 1 are no longer

used.
> If we don't need to traceback, can we save a bit of memory?
> Yes! Just throw them away!

f=[0 for i in xrange(W)]

for i in xrange(1,N):

for j in xrange(W,w[i],-1):
fljl=max(£[j],f[j-wlill+v[i]);

Chris Xiong [g 7%

Knapsack problem
0/1 knapsack problem

» How does this work?

Chris Xiong [5niEE 7%

Knapsack problem
0/1 knapsack problem

» How does this work?
(g[i][j] denotes the original f[i][j] from the two dimensional iterative solution.)

» When we are at j = y of the inner loop, f[0..y] are values from g[i — 1] and
fly + 1..W] contains values from g[i].

» Why reverse the inner loop?

Chris Xiong [g 7%

Knapsack problem
0/1 knapsack problem

» How does this work?
(g[i][j] denotes the original f[i][j] from the two dimensional iterative solution.)

» When we are at j = y of the inner loop, f[0..y] are values from g[i — 1] and
fly + 1..W] contains values from g[i].

» Why reverse the inner loop?

» Because we still need the values with smaller remaining_capacity from the last
iteration!

Chris Xiong [niEss 7%

Knapsack problem
Unbounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has unlimited copies.

Chris Xiong [5niEE T

Knapsack problem
Unbounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has unlimited copies.

» Converting to 0/1 knapsack problem?

Chris Xiong [5niEE T

Knapsack problem
Unbounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has unlimited copies.
» Converting to 0/1 knapsack problem?

» Imitating Binary. We can obtaining any multiplicity of items from a combination
of 1x, 2x, 4x, 8x, ... of that item.

Chris Xiong [niEss 7%

Knapsack problem
Unbounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has unlimited copies.

» Converting to 0/1 knapsack problem?

» Imitating Binary. We can obtaining any multiplicity of items from a combination
of 1x, 2x, 4x, 8x, ... of that item.

» Any other solutions?

Chris Xiong [niEss 7%

Knapsack problem
Unbounded knapsack problem

Another solution:
f=[0 for i in xrange(W)]
for i in xrange(1,N):
for j in xrange(w[i],W):
fl[jl=max (£ [j1,f[j-wlill+v[i]);
Wait... Isn't this our final solution for the 0/1 knapsack problem?

Chris Xiong [niEss 7%

Knapsack problem
Unbounded knapsack problem

» Not exactly! Note that the inner loop now iterate from wli] to W.
» Why?

Chris Xiong [5niEE 7%

Knapsack problem
Unbounded knapsack problem

v

Not exactly! Note that the inner loop now iterate from w[i] to W.
Why?

Let's revisit the reason to iterate in reverse order in 0/1 knapsack problem:

v

v

We still need the values with smaller remaining _capacity from the last iteration.

v

Chris Xiong [5niEss 7%

Knapsack problem
Unbounded knapsack problem

v

Not exactly! Note that the inner loop now iterate from w[i] to W.
Why?

Let's revisit the reason to iterate in reverse order in 0/1 knapsack problem:

v

v

v

We still need the values with smaller remaining _capacity from the last iteration.

v

Why do we need those values, instead of the shiney new values we just obtained?

Chris Xiong [niEss 7%

Knapsack problem
Unbounded knapsack problem

» Not exactly! Note that the inner loop now iterate from wli] to W.

» Why?

> Let's revisit the reason to iterate in reverse order in 0/1 knapsack problem:

» We still need the values with smaller remaining _capacity from the last iteration.
» Why do we need those values, instead of the shiney new values we just obtained?

» Because these values do not take the current item into consideration, effectively
ensuring that every item can be used at most once.

» But now we have unlimited copies of each item!

Chris Xiong [niEss 7%

Knapsack problem

Bounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has C; copies.
» POJ 1276

Chris Xiong [5nEE 7%

Knapsack problem

Bounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has C; copies.
» POJ 1276
» Still solve by converting to a 0/1 knapsack problem.

Chris Xiong [5nEE 7%

Knapsack problem

Bounded knapsack problem

v

Same as the 0/1 knapsack problem, but each item has C; copies.
POJ 1276
Still solve by converting to a 0/1 knapsack problem.

v

v

v

How to limit the maximum number of copies?

Chris Xiong [niEss 7%

Knapsack problem

Bounded knapsack problem

» Same as the 0/1 knapsack problem, but each item has C; copies.
» POJ 1276

» Still solve by converting to a 0/1 knapsack problem.

» How to limit the maximum number of copies?

» By modifying the largest group so that if all groups are selected, the sum of
multiplicity equals to C;.

Chris Xiong Bt agsdl

Knapsack problem

Bounded knapsack problem

Another "stupid” solution that can also be applied to the unbounded knapsack
problem:

» For each item, we have C; + 1 choices.

v

We just iterate through these choices to update f[][].
This solution runs for O(WXG;).

» However it can be further optimized to O(NW) using some advanced DP
optimization technics.

v

Chris Xiong [g 7%

https://github.com/tianyicui/pack

Knapsack problem
Bounded knapsack problem

Another "stupid” solution that can also be applied to the unbounded knapsack
problem:

>

>

>

For each item, we have C; + 1 choices.
We just iterate through these choices to update f[][].
This solution runs for O(WX(;).

However it can be further optimized to O(NW) using some advanced DP
optimization technics.

We are not covering that here today.

More about knapsack problems:
https://github.com/tianyicui/pack

Chris Xiong [niEss 7%

https://github.com/tianyicui/pack

GRS TRA A

LUN N BEER R

GRS TRA A

TR R 24 2% FRERFTRAAC?

A 3N R 2 BRI R
= AR IT—REWA— RS

2 AR iR 245 A B,

HPAAR G FRIT AR T —Hohy

2 AACR IR LS E O R

vV vV vV Vv VY

Chris Xiong [niEss 7%

GRS TRA A

—IE#

v

BIHEX A BT (EROLHEEL)

LB Rl 45

FIH B F

WA—E—HIFR, AR (CREATLUE— T sk B 2 £ /i)

BufEs
y 78138 23:20

WAESEFHTHgg
BRBLLERM (35 2)_
e P e

v

v

v

21108874 201707-13 23114229 S35 285AMS 3488EK ™
21088867 20170712 17:58:39 306 000N 160K s
21086026 20170712 16:34:27 E mms 31200k [
21082698 20170712 13:58:01 o5 34mseK s
2061614 201707-11 1038:46 2eas 34592k [
2061376 20170711 1027:29 o 1840K [
2061337 201707-11 1025158 o 184K s
2061200 20170711 102033 s06 ous 1840K [
2061091 201707-11 10:15:02 06 ous 184K 5748 [
2060673 201707-11 0951:28 06 15ms 1836K %508 [
2059471 20170711 012539 506 ous 1832¢ 5938 [
2050433 201707-11 01:02:20 s ous 1836€ 25788 [

kB /K5

TR

> EEREBITHE—RREN ERSERLT, ERWRIRIKAED NEA,
BRFTRE 2 SR AN KRR T M, SE [{5H800, Hi1000] AIMMLIE
iZE

» BAT A EE S o HAEAERE OENNIZ R ERT R TE, BESil—
b

> EATLLE - AREE AR BEARE T B HI R — % (RARERERE) -

Chris Xiong [niEss 7%

GRS TRA A

Bonus: FHFH #14%

WRAR A IARIIBA AL R 5 1 2%, AR A e T RER FT LABCRI A Y« ATM P A5
SHRRI R R RN - X BEA— D IEm F A — S

> EE . ST SEmE RN EGE IR CE -

> TEERE. ZARSRSEIA SR ERTTE -

ARET I, 5B — KA T LM LAAI RS, TR —REHRME [A — P BaA
i, HACA—S— D] B REEREMIFRH REHLMPHT TIE. RTiX
DREEAT N RER (RIS TR HE) -

Chris Xiong [niEss 7%

GRS TRA A

So... what's the point?

> TR A 1R

> R A4 EE T 5
> A AR

> HABBA R IR

Chris Xiong [niEss 7%

