"use strict";
(function(root) {
var MAX_VALUE = 0x7fffffff;
// The SHA256 and PBKDF2 implementation are from scrypt-async-js:
// See: https://github.com/dchest/scrypt-async-js
function SHA256(m) {
var K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,
0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01,
0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,
0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152,
0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,
0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08,
0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,
0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
var h0 = 0x6a09e667, h1 = 0xbb67ae85, h2 = 0x3c6ef372, h3 = 0xa54ff53a;
var h4 = 0x510e527f, h5 = 0x9b05688c, h6 = 0x1f83d9ab, h7 = 0x5be0cd19;
var w = new Array(64);
function blocks(p) {
var off = 0, len = p.length;
while (len >= 64) {
var a = h0, b = h1, c = h2, d = h3, e = h4, f = h5, g = h6, h = h7, u, i, j, t1, t2;
for (i = 0; i < 16; i++) {
j = off + i*4;
w[i] = ((p[j] & 0xff)<<24) | ((p[j+1] & 0xff)<<16) |
((p[j+2] & 0xff)<<8) | (p[j+3] & 0xff);
}
for (i = 16; i < 64; i++) {
u = w[i-2];
t1 = ((u>>>17) | (u<<(32-17))) ^ ((u>>>19) | (u<<(32-19))) ^ (u>>>10);
u = w[i-15];
t2 = ((u>>>7) | (u<<(32-7))) ^ ((u>>>18) | (u<<(32-18))) ^ (u>>>3);
w[i] = (((t1 + w[i-7]) | 0) + ((t2 + w[i-16]) | 0)) | 0;
}
for (i = 0; i < 64; i++) {
t1 = ((((((e>>>6) | (e<<(32-6))) ^ ((e>>>11) | (e<<(32-11))) ^
((e>>>25) | (e<<(32-25)))) + ((e & f) ^ (~e & g))) | 0) +
((h + ((K[i] + w[i]) | 0)) | 0)) | 0;
t2 = ((((a>>>2) | (a<<(32-2))) ^ ((a>>>13) | (a<<(32-13))) ^
((a>>>22) | (a<<(32-22)))) + ((a & b) ^ (a & c) ^ (b & c))) | 0;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
h0 = (h0 + a) | 0;
h1 = (h1 + b) | 0;
h2 = (h2 + c) | 0;
h3 = (h3 + d) | 0;
h4 = (h4 + e) | 0;
h5 = (h5 + f) | 0;
h6 = (h6 + g) | 0;
h7 = (h7 + h) | 0;
off += 64;
len -= 64;
}
}
blocks(m);
var i, bytesLeft = m.length % 64,
bitLenHi = (m.length / 0x20000000) | 0,
bitLenLo = m.length << 3,
numZeros = (bytesLeft < 56) ? 56 : 120,
p = m.slice(m.length - bytesLeft, m.length);
p.push(0x80);
for (i = bytesLeft + 1; i < numZeros; i++) { p.push(0); }
p.push((bitLenHi>>>24) & 0xff);
p.push((bitLenHi>>>16) & 0xff);
p.push((bitLenHi>>>8) & 0xff);
p.push((bitLenHi>>>0) & 0xff);
p.push((bitLenLo>>>24) & 0xff);
p.push((bitLenLo>>>16) & 0xff);
p.push((bitLenLo>>>8) & 0xff);
p.push((bitLenLo>>>0) & 0xff);
blocks(p);
return [
(h0>>>24) & 0xff, (h0>>>16) & 0xff, (h0>>>8) & 0xff, (h0>>>0) & 0xff,
(h1>>>24) & 0xff, (h1>>>16) & 0xff, (h1>>>8) & 0xff, (h1>>>0) & 0xff,
(h2>>>24) & 0xff, (h2>>>16) & 0xff, (h2>>>8) & 0xff, (h2>>>0) & 0xff,
(h3>>>24) & 0xff, (h3>>>16) & 0xff, (h3>>>8) & 0xff, (h3>>>0) & 0xff,
(h4>>>24) & 0xff, (h4>>>16) & 0xff, (h4>>>8) & 0xff, (h4>>>0) & 0xff,
(h5>>>24) & 0xff, (h5>>>16) & 0xff, (h5>>>8) & 0xff, (h5>>>0) & 0xff,
(h6>>>24) & 0xff, (h6>>>16) & 0xff, (h6>>>8) & 0xff, (h6>>>0) & 0xff,
(h7>>>24) & 0xff, (h7>>>16) & 0xff, (h7>>>8) & 0xff, (h7>>>0) & 0xff
];
}
function PBKDF2_HMAC_SHA256_OneIter(password, salt, dkLen) {
// compress password if it's longer than hash block length
password = password.length <= 64 ? password : SHA256(password);
var i;
var innerLen = 64 + salt.length + 4;
var inner = new Array(innerLen);
var outerKey = new Array(64);
var dk = [];
// inner = (password ^ ipad) || salt || counter
for (i = 0; i < 64; i++) inner[i] = 0x36;
for (i = 0; i < password.length; i++) inner[i] ^= password[i];
for (i = 0; i < salt.length; i++) inner[64+i] = salt[i];
for (i = innerLen - 4; i < innerLen; i++) inner[i] = 0;
// outerKey = password ^ opad
for (i = 0; i < 64; i++) outerKey[i] = 0x5c;
for (i = 0; i < password.length; i++) outerKey[i] ^= password[i];
// increments counter inside inner
function incrementCounter() {
for (var i = innerLen-1; i >= innerLen-4; i--) {
inner[i]++;
if (inner[i] <= 0xff) return;
inner[i] = 0;
}
}
// output blocks = SHA256(outerKey || SHA256(inner)) ...
while (dkLen >= 32) {
incrementCounter();
dk = dk.concat(SHA256(outerKey.concat(SHA256(inner))));
dkLen -= 32;
}
if (dkLen > 0) {
incrementCounter();
dk = dk.concat(SHA256(outerKey.concat(SHA256(inner))).slice(0, dkLen));
}
return dk;
}
// The following is an adaptation of scryptsy
// See: https://www.npmjs.com/package/scryptsy
function blockmix_salsa8(BY, Yi, r, x, _X) {
var i;
arraycopy(BY, (2 * r - 1) * 16, _X, 0, 16);
for (i = 0; i < 2 * r; i++) {
blockxor(BY, i * 16, _X, 16);
salsa20_8(_X, x);
arraycopy(_X, 0, BY, Yi + (i * 16), 16);
}
for (i = 0; i < r; i++) {
arraycopy(BY, Yi + (i * 2) * 16, BY, (i * 16), 16);
}
for (i = 0; i < r; i++) {
arraycopy(BY, Yi + (i * 2 + 1) * 16, BY, (i + r) * 16, 16);
}
}
function R(a, b) {
return (a << b) | (a >>> (32 - b));
}
function salsa20_8(B, x) {
arraycopy(B, 0, x, 0, 16);
for (var i = 8; i > 0; i -= 2) {
x[ 4] ^= R(x[ 0] + x[12], 7);
x[ 8] ^= R(x[ 4] + x[ 0], 9);
x[12] ^= R(x[ 8] + x[ 4], 13);
x[ 0] ^= R(x[12] + x[ 8], 18);
x[ 9] ^= R(x[ 5] + x[ 1], 7);
x[13] ^= R(x[ 9] + x[ 5], 9);
x[ 1] ^= R(x[13] + x[ 9], 13);
x[ 5] ^= R(x[ 1] + x[13], 18);
x[14] ^= R(x[10] + x[ 6], 7);
x[ 2] ^= R(x[14] + x[10], 9);
x[ 6] ^= R(x[ 2] + x[14], 13);
x[10] ^= R(x[ 6] + x[ 2], 18);
x[ 3] ^= R(x[15] + x[11], 7);
x[ 7] ^= R(x[ 3] + x[15], 9);
x[11] ^= R(x[ 7] + x[ 3], 13);
x[15] ^= R(x[11] + x[ 7], 18);
x[ 1] ^= R(x[ 0] + x[ 3], 7);
x[ 2] ^= R(x[ 1] + x[ 0], 9);
x[ 3] ^= R(x[ 2] + x[ 1], 13);
x[ 0] ^= R(x[ 3] + x[ 2], 18);
x[ 6] ^= R(x[ 5] + x[ 4], 7);
x[ 7] ^= R(x[ 6] + x[ 5], 9);
x[ 4] ^= R(x[ 7] + x[ 6], 13);
x[ 5] ^= R(x[ 4] + x[ 7], 18);
x[11] ^= R(x[10] + x[ 9], 7);
x[ 8] ^= R(x[11] + x[10], 9);
x[ 9] ^= R(x[ 8] + x[11], 13);
x[10] ^= R(x[ 9] + x[ 8], 18);
x[12] ^= R(x[15] + x[14], 7);
x[13] ^= R(x[12] + x[15], 9);
x[14] ^= R(x[13] + x[12], 13);
x[15] ^= R(x[14] + x[13], 18);
}
for (i = 0; i < 16; ++i) {
B[i] += x[i];
}
}
// naive approach... going back to loop unrolling may yield additional performance
function blockxor(S, Si, D, len) {
for (var i = 0; i < len; i++) {
D[i] ^= S[Si + i]
}
}
function arraycopy(src, srcPos, dest, destPos, length) {
while (length--) {
dest[destPos++] = src[srcPos++];
}
}
function checkBufferish(o) {
if (!o || typeof(o.length) !== 'number') {
return false;
}
for (var i = 0; i < o.length; i++) {
if (typeof(o[i]) !== 'number') { return false; }
var v = parseInt(o[i]);
if (v != o[i] || v < 0 || v >= 256) {
return false;
}
}
return true;
}
function ensureInteger(value, name) {
var intValue = parseInt(value);
if (value != intValue) { throw new Error('invalid ' + name); }
return intValue;
}
// N = Cpu cost, r = Memory cost, p = parallelization cost
// callback(error, progress, key)
function scrypt(password, salt, N, r, p, dkLen, callback) {
if (!callback) { throw new Error('missing callback'); }
N = ensureInteger(N, 'N');
r = ensureInteger(r, 'r');
p = ensureInteger(p, 'p');
dkLen = ensureInteger(dkLen, 'dkLen');
if (N === 0 || (N & (N - 1)) !== 0) { throw new Error('N must be power of 2'); }
if (N > MAX_VALUE / 128 / r) { throw new Error('N too large'); }
if (r > MAX_VALUE / 128 / p) { throw new Error('r too large'); }
if (!checkBufferish(password)) {
throw new Error('password must be an array or buffer');
}
if (!checkBufferish(salt)) {
throw new Error('salt must be an array or buffer');
}
var b = PBKDF2_HMAC_SHA256_OneIter(password, salt, p * 128 * r);
var B = new Uint32Array(p * 32 * r)
for (var i = 0; i < B.length; i++) {
var j = i * 4;
B[i] = ((b[j + 3] & 0xff) << 24) |
((b[j + 2] & 0xff) << 16) |
((b[j + 1] & 0xff) << 8) |
((b[j + 0] & 0xff) << 0);
}
var XY = new Uint32Array(64 * r);
var V = new Uint32Array(32 * r * N);
var Yi = 32 * r;
// scratch space
var x = new Uint32Array(16); // salsa20_8
var _X = new Uint32Array(16); // blockmix_salsa8
var totalOps = p * N * 2;
var currentOp = 0;
var lastPercent10 = null;
// Set this to true to abandon the scrypt on the next step
var stop = false;
// State information
var state = 0;
var i0 = 0, i1;
var Bi;
// How many blockmix_salsa8 can we do per step?
var limit = parseInt(1000 / r);
// Trick from scrypt-async; if there is a setImmediate shim in place, use it
var nextTick = (typeof(setImmediate) !== 'undefined') ? setImmediate : setTimeout;
// This is really all I changed; making scryptsy a state machine so we occasionally
// stop and give other evnts on the evnt loop a chance to run. ~RicMoo
var incrementalSMix = function() {
if (stop) {
return callback(new Error('cancelled'), currentOp / totalOps);
}
switch (state) {
case 0:
// for (var i = 0; i < p; i++)...
Bi = i0 * 32 * r;
arraycopy(B, Bi, XY, 0, Yi); // ROMix - 1
state = 1; // Move to ROMix 2
i1 = 0;
// Fall through
case 1:
// Run up to 1000 steps of the first inner smix loop
var steps = N - i1;
if (steps > limit) { steps = limit; }
for (var i = 0; i < steps; i++) { // ROMix - 2
arraycopy(XY, 0, V, (i1 + i) * Yi, Yi) // ROMix - 3
blockmix_salsa8(XY, Yi, r, x, _X); // ROMix - 4
}
// for (var i = 0; i < N; i++)
i1 += steps;
currentOp += steps;
// Call the callback with the progress (optionally stopping us)
var percent10 = parseInt(1000 * currentOp / totalOps);
if (percent10 !== lastPercent10) {
stop = callback(null, currentOp / totalOps);
if (stop) { break; }
lastPercent10 = percent10;
}
if (i1 < N) {
break;
}
i1 = 0; // Move to ROMix 6
state = 2;
// Fall through
case 2:
// Run up to 1000 steps of the second inner smix loop
var steps = N - i1;
if (steps > limit) { steps = limit; }
for (var i = 0; i < steps; i++) { // ROMix - 6
var offset = (2 * r - 1) * 16; // ROMix - 7
var j = XY[offset] & (N - 1);
blockxor(V, j * Yi, XY, Yi); // ROMix - 8 (inner)
blockmix_salsa8(XY, Yi, r, x, _X); // ROMix - 9 (outer)
}
// for (var i = 0; i < N; i++)...
i1 += steps;
currentOp += steps;
// Call the callback with the progress (optionally stopping us)
var percent10 = parseInt(1000 * currentOp / totalOps);
if (percent10 !== lastPercent10) {
stop = callback(null, currentOp / totalOps);
if (stop) { break; }
lastPercent10 = percent10;
}
if (i1 < N) {
break;
}
arraycopy(XY, 0, B, Bi, Yi); // ROMix - 10
// for (var i = 0; i < p; i++)...
i0++;
if (i0 < p) {
state = 0;
break;
}
b = [];
for (var i = 0; i < B.length; i++) {
b.push((B[i] >> 0) & 0xff);
b.push((B[i] >> 8) & 0xff);
b.push((B[i] >> 16) & 0xff);
b.push((B[i] >> 24) & 0xff);
}
var derivedKey = PBKDF2_HMAC_SHA256_OneIter(password, b, dkLen);
// Done; don't break (which would reschedule)
return callback(null, 1.0, derivedKey);
}
// Schedule the next steps
nextTick(incrementalSMix);
}
// Bootstrap the incremental smix
incrementalSMix();
}
// node.js
if (typeof(exports) !== 'undefined') {
module.exports = scrypt;
// RequireJS/AMD
// http://www.requirejs.org/docs/api.html
// https://github.com/amdjs/amdjs-api/wiki/AMD
} else if (typeof(define) === 'function' && define.amd) {
define(scrypt);
// Web Browsers
} else if (root) {
// If there was an existing library "scrypt", make sure it is still available
if (root.scrypt) {
root._scrypt = root.scrypt;
}
root.scrypt = scrypt;
}
})(this);