// xImaDsp.cpp : DSP functions
/* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it
* CxImage version 7.0.0 31/Dec/2010
*/
#include "ximage.h"
#include "ximaiter.h"
#if CXIMAGE_SUPPORT_DSP
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W.
* The OptimalThreshold() function can be used for calculating the optimal threshold.
* \param level: the lightness threshold.
* \return true if everything is ok
*/
bool CxImage::Threshold(uint8_t level)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
GrayScale();
CxImage tmp(head.biWidth,head.biHeight,1);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
for (int32_t y=0;y<head.biHeight;y++){
info.nProgress = (int32_t)(100*y/head.biHeight);
if (info.nEscape) break;
for (int32_t x=0;x<head.biWidth;x++){
if (BlindGetPixelIndex(x,y)>level)
tmp.BlindSetPixelIndex(x,y,1);
else
tmp.BlindSetPixelIndex(x,y,0);
}
}
tmp.SetPaletteColor(0,0,0,0);
tmp.SetPaletteColor(1,255,255,255);
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W, using a threshold mask
* \param pThresholdMask: the lightness threshold mask.
* the pThresholdMask image must be grayscale with same with and height of the current image
* \return true if everything is ok
*/
bool CxImage::Threshold(CxImage* pThresholdMask)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
if (!pThresholdMask) return false;
if (!pThresholdMask->IsValid() ||
!pThresholdMask->IsGrayScale() ||
pThresholdMask->GetWidth() != GetWidth() ||
pThresholdMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"invalid ThresholdMask");
return false;
}
GrayScale();
CxImage tmp(head.biWidth,head.biHeight,1);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
for (int32_t y=0;y<head.biHeight;y++){
info.nProgress = (int32_t)(100*y/head.biHeight);
if (info.nEscape) break;
for (int32_t x=0;x<head.biWidth;x++){
if (BlindGetPixelIndex(x,y)>pThresholdMask->BlindGetPixelIndex(x,y))
tmp.BlindSetPixelIndex(x,y,1);
else
tmp.BlindSetPixelIndex(x,y,0);
}
}
tmp.SetPaletteColor(0,0,0,0);
tmp.SetPaletteColor(1,255,255,255);
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Filters only the pixels with a lightness less (or more) than the threshold level,
* and preserves the colors for the unfiltered pixels.
* \param level = the lightness threshold.
* \param bDirection = false: filter dark pixels, true: filter light pixels
* \param nBkgndColor = filtered pixels are set to nBkgndColor color
* \param bSetAlpha = if true, sets also the alpha component for the filtered pixels, with nBkgndColor.rgbReserved
* \return true if everything is ok
* \author [DP], [wangsongtao]
*/
////////////////////////////////////////////////////////////////////////////////
bool CxImage::Threshold2(uint8_t level, bool bDirection, RGBQUAD nBkgndColor, bool bSetAlpha)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
CxImage tmp(*this, true, false, false);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
tmp.GrayScale();
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*y/head.biHeight);
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
uint8_t i = tmp.BlindGetPixelIndex(x,y);
if (!bDirection && i<level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
if (bDirection && i>=level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract RGB channels from the image. Each channel is an 8 bit grayscale image.
* \param r,g,b: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b)
{
if (!pDib) return false;
if (r==NULL && g==NULL && b==NULL) return false;
CxImage tmpr(head.biWidth,head.biHeight,8);
CxImage tmpg(head.biWidth,head.biHeight,8);
CxImage tmpb(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t y=0; y<head.biHeight; y++){
for(int32_t x=0; x<head.biWidth; x++){
color = BlindGetPixelColor(x,y);
if (r) tmpr.BlindSetPixelIndex(x,y,color.rgbRed);
if (g) tmpg.BlindSetPixelIndex(x,y,color.rgbGreen);
if (b) tmpb.BlindSetPixelIndex(x,y,color.rgbBlue);
}
}
if (r) tmpr.SetGrayPalette();
if (g) tmpg.SetGrayPalette();
if (b) tmpb.SetGrayPalette();
/*for(int32_t j=0; j<256; j++){
uint8_t i=(uint8_t)j;
if (r) tmpr.SetPaletteColor(i,i,0,0);
if (g) tmpg.SetPaletteColor(i,0,i,0);
if (b) tmpb.SetPaletteColor(i,0,0,i);
}*/
if (r) r->Transfer(tmpr);
if (g) g->Transfer(tmpg);
if (b) b->Transfer(tmpb);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract CMYK channels from the image. Each channel is an 8 bit grayscale image.
* \param c,m,y,k: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k)
{
if (!pDib) return false;
if (c==NULL && m==NULL && y==NULL && k==NULL) return false;
CxImage tmpc(head.biWidth,head.biHeight,8);
CxImage tmpm(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpk(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t yy=0; yy<head.biHeight; yy++){
for(int32_t xx=0; xx<head.biWidth; xx++){
color = BlindGetPixelColor(xx,yy);
if (c) tmpc.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbRed));
if (m) tmpm.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbGreen));
if (y) tmpy.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbBlue));
if (k) tmpk.BlindSetPixelIndex(xx,yy,(uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue));
}
}
if (c) tmpc.SetGrayPalette();
if (m) tmpm.SetGrayPalette();
if (y) tmpy.SetGrayPalette();
if (k) tmpk.SetGrayPalette();
if (c) c->Transfer(tmpc);
if (m) m->Transfer(tmpm);
if (y) y->Transfer(tmpy);
if (k) k->Transfer(tmpk);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YUV channels from the image. Each channel is an 8 bit grayscale image.
* \param y,u,v: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v)
{
if (!pDib) return false;
if (y==NULL && u==NULL && v==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpu(head.biWidth,head.biHeight,8);
CxImage tmpv(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t yy=0; yy<head.biHeight; yy++){
for(int32_t x=0; x<head.biWidth; x++){
color = RGBtoYUV(BlindGetPixelColor(x,yy));
if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
if (u) tmpu.BlindSetPixelIndex(x,yy,color.rgbGreen);
if (v) tmpv.BlindSetPixelIndex(x,yy,color.rgbBlue);
}
}
if (y) tmpy.SetGrayPalette();
if (u) tmpu.SetGrayPalette();
if (v) tmpv.SetGrayPalette();
if (y) y->Transfer(tmpy);
if (u) u->Transfer(tmpu);
if (v) v->Transfer(tmpv);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YIQ channels from the image. Each channel is an 8 bit grayscale image.
* \param y,i,q: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q)
{
if (!pDib) return false;
if (y==NULL && i==NULL && q==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpi(head.biWidth,head.biHeight,8);
CxImage tmpq(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t yy=0; yy<head.biHeight; yy++){
for(int32_t x=0; x<head.biWidth; x++){
color = RGBtoYIQ(BlindGetPixelColor(x,yy));
if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
if (i) tmpi.BlindSetPixelIndex(x,yy,color.rgbGreen);
if (q) tmpq.BlindSetPixelIndex(x,yy,color.rgbBlue);
}
}
if (y) tmpy.SetGrayPalette();
if (i) tmpi.SetGrayPalette();
if (q) tmpq.SetGrayPalette();
if (y) y->Transfer(tmpy);
if (i) i->Transfer(tmpi);
if (q) q->Transfer(tmpq);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract XYZ channels from the image. Each channel is an 8 bit grayscale image.
* \param x,y,z: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z)
{
if (!pDib) return false;
if (x==NULL && y==NULL && z==NULL) return false;
CxImage tmpx(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpz(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t yy=0; yy<head.biHeight; yy++){
for(int32_t xx=0; xx<head.biWidth; xx++){
color = RGBtoXYZ(BlindGetPixelColor(xx,yy));
if (x) tmpx.BlindSetPixelIndex(xx,yy,color.rgbRed);
if (y) tmpy.BlindSetPixelIndex(xx,yy,color.rgbGreen);
if (z) tmpz.BlindSetPixelIndex(xx,yy,color.rgbBlue);
}
}
if (x) tmpx.SetGrayPalette();
if (y) tmpy.SetGrayPalette();
if (z) tmpz.SetGrayPalette();
if (x) x->Transfer(tmpx);
if (y) y->Transfer(tmpy);
if (z) z->Transfer(tmpz);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract HSL channels from the image. Each channel is an 8 bit grayscale image.
* \param h,s,l: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l)
{
if (!pDib) return false;
if (h==NULL && s==NULL && l==NULL) return false;
CxImage tmph(head.biWidth,head.biHeight,8);
CxImage tmps(head.biWidth,head.biHeight,8);
CxImage tmpl(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(int32_t y=0; y<head.biHeight; y++){
for(int32_t x=0; x<head.biWidth; x++){
color = RGBtoHSL(BlindGetPixelColor(x,y));
if (h) tmph.BlindSetPixelIndex(x,y,color.rgbRed);
if (s) tmps.BlindSetPixelIndex(x,y,color.rgbGreen);
if (l) tmpl.BlindSetPixelIndex(x,y,color.rgbBlue);
}
}
if (h) tmph.SetGrayPalette();
if (s) tmps.SetGrayPalette();
if (l) tmpl.SetGrayPalette();
/* pseudo-color generator for hue channel (visual debug)
if (h) for(int32_t j=0; j<256; j++){
uint8_t i=(uint8_t)j;
RGBQUAD hsl={120,240,i,0};
tmph.SetPaletteColor(i,HSLtoRGB(hsl));
}*/
if (h) h->Transfer(tmph);
if (s) s->Transfer(tmps);
if (l) l->Transfer(tmpl);
return true;
}
////////////////////////////////////////////////////////////////////////////////
#define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */
#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
/* HSLMAX BEST IF DIVISIBLE BY 6 */
/* RGBMAX, HSLMAX must each fit in a uint8_t. */
/* Hue is undefined if Saturation is 0 (grey-scale) */
/* This value determines where the Hue scrollbar is */
/* initially set for achromatic colors */
#define HSLUNDEFINED (HSLMAX*2/3)
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor)
{
uint8_t R,G,B; /* input RGB values */
uint8_t H,L,S; /* output HSL values */
uint8_t cMax,cMin; /* max and min RGB values */
uint16_t Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/
R = lRGBColor.rgbRed; /* get R, G, and B out of uint32_t */
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
cMax = max( max(R,G), B); /* calculate lightness */
cMin = min( min(R,G), B);
L = (uint8_t)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX));
if (cMax==cMin){ /* r=g=b --> achromatic case */
S = 0; /* saturation */
H = HSLUNDEFINED; /* hue */
} else { /* chromatic case */
if (L <= (HSLMAX/2)) /* saturation */
S = (uint8_t)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin));
else
S = (uint8_t)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin));
/* hue */
Rdelta = (uint16_t)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Gdelta = (uint16_t)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Bdelta = (uint16_t)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
if (R == cMax)
H = (uint8_t)(Bdelta - Gdelta);
else if (G == cMax)
H = (uint8_t)((HSLMAX/3) + Rdelta - Bdelta);
else /* B == cMax */
H = (uint8_t)(((2*HSLMAX)/3) + Gdelta - Rdelta);
// if (H < 0) H += HSLMAX; //always false
if (H > HSLMAX) H -= HSLMAX;
}
RGBQUAD hsl={L,S,H,0};
return hsl;
}
////////////////////////////////////////////////////////////////////////////////
float CxImage::HueToRGB(float n1,float n2, float hue)
{
//<F. Livraghi> fixed implementation for HSL2RGB routine
float rValue;
if (hue > 360)
hue = hue - 360;
else if (hue < 0)
hue = hue + 360;
if (hue < 60)
rValue = n1 + (n2-n1)*hue/60.0f;
else if (hue < 180)
rValue = n2;
else if (hue < 240)
rValue = n1+(n2-n1)*(240-hue)/60;
else
rValue = n1;
return rValue;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor)
{
return HSLtoRGB(RGBtoRGBQUAD(cHSLColor));
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor)
{
//<F. Livraghi> fixed implementation for HSL2RGB routine
float h,s,l;
float m1,m2;
uint8_t r,g,b;
h = (float)lHSLColor.rgbRed * 360.0f/255.0f;
s = (float)lHSLColor.rgbGreen/255.0f;
l = (float)lHSLColor.rgbBlue/255.0f;
if (l <= 0.5) m2 = l * (1+s);
else m2 = l + s - l*s;
m1 = 2 * l - m2;
if (s == 0) {
r=g=b=(uint8_t)(l*255.0f);
} else {
r = (uint8_t)(HueToRGB(m1,m2,h+120) * 255.0f);
g = (uint8_t)(HueToRGB(m1,m2,h) * 255.0f);
b = (uint8_t)(HueToRGB(m1,m2,h-120) * 255.0f);
}
RGBQUAD rgb = {b,g,r,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor)
{
int32_t U,V,R,G,B;
float Y = lYUVColor.rgbRed;
U = lYUVColor.rgbGreen - 128;
V = lYUVColor.rgbBlue - 128;
// R = (int32_t)(1.164 * Y + 2.018 * U);
// G = (int32_t)(1.164 * Y - 0.813 * V - 0.391 * U);
// B = (int32_t)(1.164 * Y + 1.596 * V);
R = (int32_t)( Y + 1.403f * V);
G = (int32_t)( Y - 0.344f * U - 0.714f * V);
B = (int32_t)( Y + 1.770f * U);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor)
{
int32_t Y,U,V,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
// Y = (int32_t)( 0.257 * R + 0.504 * G + 0.098 * B);
// U = (int32_t)( 0.439 * R - 0.368 * G - 0.071 * B + 128);
// V = (int32_t)(-0.148 * R - 0.291 * G + 0.439 * B + 128);
Y = (int32_t)(0.299f * R + 0.587f * G + 0.114f * B);
U = (int32_t)((B-Y) * 0.565f + 128);
V = (int32_t)((R-Y) * 0.713f + 128);
Y= min(255,max(0,Y));
U= min(255,max(0,U));
V= min(255,max(0,V));
RGBQUAD yuv={(uint8_t)V,(uint8_t)U,(uint8_t)Y,0};
return yuv;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor)
{
int32_t I,Q,R,G,B;
float Y = lYIQColor.rgbRed;
I = lYIQColor.rgbGreen - 128;
Q = lYIQColor.rgbBlue - 128;
R = (int32_t)( Y + 0.956f * I + 0.621f * Q);
G = (int32_t)( Y - 0.273f * I - 0.647f * Q);
B = (int32_t)( Y - 1.104f * I + 1.701f * Q);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor)
{
int32_t Y,I,Q,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
Y = (int32_t)( 0.2992f * R + 0.5868f * G + 0.1140f * B);
I = (int32_t)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128);
Q = (int32_t)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128);
Y= min(255,max(0,Y));
I= min(255,max(0,I));
Q= min(255,max(0,Q));
RGBQUAD yiq={(uint8_t)Q,(uint8_t)I,(uint8_t)Y,0};
return yiq;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor)
{
int32_t X,Y,Z,R,G,B;
X = lXYZColor.rgbRed;
Y = lXYZColor.rgbGreen;
Z = lXYZColor.rgbBlue;
double k=1.088751;
R = (int32_t)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k);
G = (int32_t)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k);
B = (int32_t)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor)
{
int32_t X,Y,Z,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
X = (int32_t)( 0.412453f * R + 0.357580f * G + 0.180423f * B);
Y = (int32_t)( 0.212671f * R + 0.715160f * G + 0.072169f * B);
Z = (int32_t)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f);
//X= min(255,max(0,X));
//Y= min(255,max(0,Y));
//Z= min(255,max(0,Z));
RGBQUAD xyz={(uint8_t)Z,(uint8_t)Y,(uint8_t)X,0};
return xyz;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Generates a "rainbow" palette with saturated colors
* \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications.
*/
void CxImage::HuePalette(float correction)
{
if (head.biClrUsed==0) return;
for(uint32_t j=0; j<head.biClrUsed; j++){
uint8_t i=(uint8_t)(j*correction*(255/(head.biClrUsed-1)));
RGBQUAD hsl={120,240,i,0};
SetPaletteColor((uint8_t)j,HSLtoRGB(hsl));
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* Replaces the original hue and saturation values.
* \param hue: hue
* \param sat: saturation
* \param blend: can be from 0 (no effect) to 1 (full effect)
* \return true if everything is ok
*/
bool CxImage::Colorize(uint8_t hue, uint8_t sat, float blend)
{
if (!pDib) return false;
if (blend < 0.0f) blend = 0.0f;
if (blend > 1.0f) blend = 1.0f;
int32_t a0 = (int32_t)(256*blend);
int32_t a1 = 256 - a0;
bool bFullBlend = false;
if (blend > 0.999f) bFullBlend = true;
RGBQUAD color,hsl;
if (head.biClrUsed==0){
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
if (bFullBlend){
color = RGBtoHSL(BlindGetPixelColor(x,y));
color.rgbRed=hue;
color.rgbGreen=sat;
BlindSetPixelColor(x,y,HSLtoRGB(color));
} else {
color = BlindGetPixelColor(x,y);
hsl.rgbRed=hue;
hsl.rgbGreen=sat;
hsl.rgbBlue = (uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
hsl = HSLtoRGB(hsl);
//BlendPixelColor(x,y,hsl,blend);
//color.rgbRed = (uint8_t)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
//color.rgbBlue = (uint8_t)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
//color.rgbGreen = (uint8_t)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
color.rgbRed = (uint8_t)((hsl.rgbRed * a0 + color.rgbRed * a1)>>8);
color.rgbBlue = (uint8_t)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8);
color.rgbGreen = (uint8_t)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8);
BlindSetPixelColor(x,y,color);
}
}
}
}
} else {
for(uint32_t j=0; j<head.biClrUsed; j++){
if (bFullBlend){
color = RGBtoHSL(GetPaletteColor((uint8_t)j));
color.rgbRed=hue;
color.rgbGreen=sat;
SetPaletteColor((uint8_t)j,HSLtoRGB(color));
} else {
color = GetPaletteColor((uint8_t)j);
hsl.rgbRed=hue;
hsl.rgbGreen=sat;
hsl.rgbBlue = (uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
hsl = HSLtoRGB(hsl);
color.rgbRed = (uint8_t)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
color.rgbBlue = (uint8_t)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
color.rgbGreen = (uint8_t)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
SetPaletteColor((uint8_t)j,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Changes the brightness and the contrast of the image.
* \param brightness: can be from -255 to 255, if brightness is negative, the image becomes dark.
* \param contrast: can be from -100 to 100, the neutral value is 0.
* \return true if everything is ok
*/
bool CxImage::Light(int32_t brightness, int32_t contrast)
{
if (!pDib) return false;
float c=(100 + contrast)/100.0f;
brightness+=128;
uint8_t cTable[256]; //<nipper>
for (int32_t i=0;i<256;i++) {
cTable[i] = (uint8_t)max(0,min(255,(int32_t)((i-128)*c + brightness + 0.5f)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
/**
* \return mean lightness of the image. Useful with Threshold() and Light()
*/
float CxImage::Mean()
{
if (!pDib) return 0;
CxImage tmp(*this,true);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
tmp.GrayScale();
float sum=0;
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax) return (float)0.0;
uint8_t *iSrc=tmp.info.pImage;
iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections <Admir Hodzic>
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
for(int32_t x=xmin; x<xmax; x++){
sum+=iSrc[x];
}
iSrc+=tmp.info.dwEffWidth;
}
return sum/(xmax-xmin)/(ymax-ymin);
}
////////////////////////////////////////////////////////////////////////////////
/**
* 2D linear filter
* \param kernel: convolving matrix, in row format.
* \param Ksize: size of the kernel.
* \param Kfactor: normalization constant.
* \param Koffset: bias.
* \verbatim Example: the "soften" filter uses this kernel:
1 1 1
1 8 1
1 1 1
the function needs: kernel={1,1,1,1,8,1,1,1,1}; Ksize=3; Kfactor=16; Koffset=0; \endverbatim
* \return true if everything is ok
*/
bool CxImage::Filter(int32_t* kernel, int32_t Ksize, int32_t Kfactor, int32_t Koffset)
{
if (!pDib) return false;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
int32_t r,g,b,i;
int32_t ksumcur,ksumtot;
RGBQUAD c;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
ksumtot = 0;
for(int32_t j=-k2;j<kmax;j++){
for(int32_t k=-k2;k<kmax;k++){
ksumtot += kernel[(j+k2)+Ksize*(k+k2)];
}
}
if ((head.biBitCount==8) && IsGrayScale())
{
uint8_t* cPtr;
uint8_t* cPtr2;
int32_t iCount;
int32_t iY, iY2, iY1;
cPtr = info.pImage;
cPtr2 = (uint8_t *)tmp.info.pImage;
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
iY1 = y*info.dwEffWidth+xmin;
for(int32_t x=xmin; x<xmax; x++, iY1++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
b=ksumcur=0;
iCount = 0;
iY2 = ((y-k2)*info.dwEffWidth);
for(int32_t j=-k2;j<kmax;j++, iY2+=info.dwEffWidth)
{
if (0>(y+j) || (y+j)>=head.biHeight) continue;
iY = iY2+x;
for(int32_t k=-k2;k<kmax;k++, iCount++)
{
if (0>(x+k) || (x+k)>=head.biWidth) continue;
i=kernel[iCount];
b += cPtr[iY+k] * i;
ksumcur += i;
}
}
if (Kfactor==0 || ksumcur==0){
cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)(b + Koffset)));
} else if (ksumtot == ksumcur) {
cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)(b/Kfactor + Koffset)));
} else {
cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
}
}
}
}
}
else
{
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=ksumcur=0;
for(int32_t j=-k2;j<kmax;j++){
for(int32_t k=-k2;k<kmax;k++){
if (!IsInside(x+j,y+k)) continue;
c = BlindGetPixelColor(x+j,y+k);
i = kernel[(j+k2)+Ksize*(k+k2)];
r += c.rgbRed * i;
g += c.rgbGreen * i;
b += c.rgbBlue * i;
ksumcur += i;
}
}
if (Kfactor==0 || ksumcur==0){
c.rgbRed = (uint8_t)min(255, max(0,(int32_t)(r + Koffset)));
c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(g + Koffset)));
c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(b + Koffset)));
} else if (ksumtot == ksumcur) {
c.rgbRed = (uint8_t)min(255, max(0,(int32_t)(r/Kfactor + Koffset)));
c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(g/Kfactor + Koffset)));
c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(b/Kfactor + Koffset)));
} else {
c.rgbRed = (uint8_t)min(255, max(0,(int32_t)((r*ksumtot)/(ksumcur*Kfactor) + Koffset)));
c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)((g*ksumtot)/(ksumcur*Kfactor) + Koffset)));
c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
}
tmp.BlindSetPixelColor(x,y,c);
}
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the dark areas of the image
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Erode(int32_t Ksize)
{
if (!pDib) return false;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
uint8_t r,g,b;
RGBQUAD c;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=255;
for(int32_t j=-k2;j<kmax;j++){
for(int32_t k=-k2;k<kmax;k++){
if (!IsInside(x+j,y+k)) continue;
c = BlindGetPixelColor(x+j,y+k);
if (c.rgbRed < r) r=c.rgbRed;
if (c.rgbGreen < g) g=c.rgbGreen;
if (c.rgbBlue < b) b=c.rgbBlue;
}
}
c.rgbRed = r;
c.rgbGreen = g;
c.rgbBlue = b;
tmp.BlindSetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the light areas of the image
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Dilate(int32_t Ksize)
{
if (!pDib) return false;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
uint8_t r,g,b;
RGBQUAD c;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=0;
for(int32_t j=-k2;j<kmax;j++){
for(int32_t k=-k2;k<kmax;k++){
if (!IsInside(x+j,y+k)) continue;
c = BlindGetPixelColor(x+j,y+k);
if (c.rgbRed > r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
}
}
c.rgbRed = r;
c.rgbGreen = g;
c.rgbBlue = b;
tmp.BlindSetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Edge(int32_t Ksize)
{
if (!pDib) return false;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
uint8_t r,g,b,rr,gg,bb;
RGBQUAD c;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=0;
rr=bb=gg=255;
for(int32_t j=-k2;j<kmax;j++){
for(int32_t k=-k2;k<kmax;k++){
if (!IsInside(x+j,y+k)) continue;
c = BlindGetPixelColor(x+j,y+k);
if (c.rgbRed > r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
if (c.rgbRed < rr) rr=c.rgbRed;
if (c.rgbGreen < gg) gg=c.rgbGreen;
if (c.rgbBlue < bb) bb=c.rgbBlue;
}
}
c.rgbRed = (uint8_t)(255-abs(r-rr));
c.rgbGreen = (uint8_t)(255-abs(g-gg));
c.rgbBlue = (uint8_t)(255-abs(b-bb));
tmp.BlindSetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Blends two images
* \param imgsrc2: image to be mixed with this
* \param op: blending method; see ImageOpType
* \param lXOffset, lYOffset: image displacement
* \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image.
* \return true if everything is ok
* \author [Mwolski],[brunom]
*/
void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, int32_t lXOffset, int32_t lYOffset, bool bMixAlpha)
{
int32_t lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset);
int32_t lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset);
bool bEditAlpha = false;
#if CXIMAGE_SUPPORT_ALPHA
bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha;
if (bEditAlpha && AlphaIsValid()==false){
AlphaCreate();
}
#endif //CXIMAGE_SUPPORT_ALPHA
RGBQUAD rgbBackgrnd1 = GetTransColor();
RGBQUAD rgb1, rgb2, rgbDest;
for(int32_t lY=0;lY<lHeight;lY++)
{
info.nProgress = (int32_t)(100*lY/head.biHeight);
if (info.nEscape) break;
for(int32_t lX=0;lX<lWide;lX++)
{
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(lX,lY) && imgsrc2.SelectionIsInside(lX+lXOffset,lY+lYOffset))
#endif //CXIMAGE_SUPPORT_SELECTION
{
rgb1 = GetPixelColor(lX,lY);
rgb2 = imgsrc2.GetPixelColor(lX+lXOffset,lY+lYOffset);
switch(op)
{
case OpAvg:
rgbDest.rgbBlue = (uint8_t)((rgb1.rgbBlue+rgb2.rgbBlue)/2);
rgbDest.rgbGreen = (uint8_t)((rgb1.rgbGreen+rgb2.rgbGreen)/2);
rgbDest.rgbRed = (uint8_t)((rgb1.rgbRed+rgb2.rgbRed)/2);
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)((rgb1.rgbReserved+rgb2.rgbReserved)/2);
break;
case OpAdd:
rgbDest.rgbBlue = (uint8_t)max(0,min(255,rgb1.rgbBlue+rgb2.rgbBlue));
rgbDest.rgbGreen = (uint8_t)max(0,min(255,rgb1.rgbGreen+rgb2.rgbGreen));
rgbDest.rgbRed = (uint8_t)max(0,min(255,rgb1.rgbRed+rgb2.rgbRed));
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)max(0,min(255,rgb1.rgbReserved+rgb2.rgbReserved));
break;
case OpSub:
rgbDest.rgbBlue = (uint8_t)max(0,min(255,rgb1.rgbBlue-rgb2.rgbBlue));
rgbDest.rgbGreen = (uint8_t)max(0,min(255,rgb1.rgbGreen-rgb2.rgbGreen));
rgbDest.rgbRed = (uint8_t)max(0,min(255,rgb1.rgbRed-rgb2.rgbRed));
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)max(0,min(255,rgb1.rgbReserved-rgb2.rgbReserved));
break;
case OpAnd:
rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue&rgb2.rgbBlue);
rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen&rgb2.rgbGreen);
rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed&rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved&rgb2.rgbReserved);
break;
case OpXor:
rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue^rgb2.rgbBlue);
rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen^rgb2.rgbGreen);
rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed^rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved^rgb2.rgbReserved);
break;
case OpOr:
rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue|rgb2.rgbBlue);
rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen|rgb2.rgbGreen);
rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed|rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved|rgb2.rgbReserved);
break;
case OpMask:
if(rgb2.rgbBlue==0 && rgb2.rgbGreen==0 && rgb2.rgbRed==0)
rgbDest = rgbBackgrnd1;
else
rgbDest = rgb1;
break;
case OpSrcCopy:
if(IsTransparent(lX,lY))
rgbDest = rgb2;
else // copy straight over
rgbDest = rgb1;
break;
case OpDstCopy:
if(imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset))
rgbDest = rgb1;
else // copy straight over
rgbDest = rgb2;
break;
case OpScreen:
{
uint8_t a,a1;
if (imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset)){
a=0;
#if CXIMAGE_SUPPORT_ALPHA
} else if (imgsrc2.AlphaIsValid()){
a=imgsrc2.AlphaGet(lX+lXOffset,lY+lYOffset);
a =(uint8_t)((a*imgsrc2.info.nAlphaMax)/255);
#endif //CXIMAGE_SUPPORT_ALPHA
} else {
a=255;
}
if (a==0){ //transparent
rgbDest = rgb1;
} else if (a==255){ //opaque
rgbDest = rgb2;
} else { //blend
a1 = (uint8_t)~a;
rgbDest.rgbBlue = (uint8_t)((rgb1.rgbBlue*a1+rgb2.rgbBlue*a)/255);
rgbDest.rgbGreen = (uint8_t)((rgb1.rgbGreen*a1+rgb2.rgbGreen*a)/255);
rgbDest.rgbRed = (uint8_t)((rgb1.rgbRed*a1+rgb2.rgbRed*a)/255);
}
if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)((rgb1.rgbReserved*a)/255);
}
break;
case OpSrcBlend:
if(IsTransparent(lX,lY))
rgbDest = rgb2;
else
{
int32_t lBDiff = abs(rgb1.rgbBlue - rgbBackgrnd1.rgbBlue);
int32_t lGDiff = abs(rgb1.rgbGreen - rgbBackgrnd1.rgbGreen);
int32_t lRDiff = abs(rgb1.rgbRed - rgbBackgrnd1.rgbRed);
double lAverage = (lBDiff+lGDiff+lRDiff)/3;
double lThresh = 16;
double dLarge = lAverage/lThresh;
double dSmall = (lThresh-lAverage)/lThresh;
double dSmallAmt = dSmall*((double)rgb2.rgbBlue);
if( lAverage < lThresh+1){
rgbDest.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbBlue) +
dSmallAmt)));
rgbDest.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbGreen) +
dSmallAmt)));
rgbDest.rgbRed = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbRed) +
dSmallAmt)));
}
else
rgbDest = rgb1;
}
break;
case OpBlendAlpha: //[brunom]
if(rgb2.rgbReserved != 0)
{
// The lower value is almost transparent, or the overlying
// almost transparent can not directly overlying the value taken
if( (rgb1.rgbReserved < 5) || (rgb2.rgbReserved > 250) ){
rgbDest = rgb2;
} else {
// Alpha Blending with associative calculation merge
// (http://en.wikipedia.org/wiki/Alpha_compositing)
int32_t a0,a1,a2;
// Transparency of the superimposed image
a2 = rgb2.rgbReserved;
// Calculation transparency of the underlying image
a1 = (rgb1.rgbReserved * (255 - a2)) >> 8;
// total transparency of the new pixel
a0 = a2 + a1;
// New transparency assume (a0 == 0 is the restriction s.o. (range 5-250) intercepted)
if (bEditAlpha) rgbDest.rgbReserved = a0;
// each color channel to calculate
rgbDest.rgbBlue = (BYTE)((rgb2.rgbBlue * a2 + a1 * rgb1.rgbBlue )/a0);
rgbDest.rgbGreen = (BYTE)((rgb2.rgbGreen * a2 + a1 * rgb1.rgbGreen)/a0);
rgbDest.rgbRed = (BYTE)((rgb2.rgbRed * a2 + a1 * rgb1.rgbRed )/a0);
}
} else {
rgbDest = rgb1;
rgbDest.rgbReserved = 0;
}
break;
default:
return;
}
SetPixelColor(lX,lY,rgbDest,bEditAlpha);
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// thanks to Kenneth Ballard
void CxImage::MixFrom(CxImage & imagesrc2, int32_t lXOffset, int32_t lYOffset)
{
int32_t width = imagesrc2.GetWidth();
int32_t height = imagesrc2.GetHeight();
int32_t x, y;
if (imagesrc2.IsTransparent()) {
for(x = 0; x < width; x++) {
for(y = 0; y < height; y++) {
if(!imagesrc2.IsTransparent(x,y)){
SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
}
}
}
} else { //no transparency so just set it <Matt>
for(x = 0; x < width; x++) {
for(y = 0; y < height; y++) {
SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts separately the red, green, and blue values in the image.
* \param r, g, b: can be from -255 to +255.
* \return true if everything is ok
*/
bool CxImage::ShiftRGB(int32_t r, int32_t g, int32_t b)
{
if (!pDib) return false;
RGBQUAD color;
if (head.biClrUsed==0){
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = BlindGetPixelColor(x,y);
color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + r)));
color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + g)));
color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + b)));
BlindSetPixelColor(x,y,color);
}
}
}
} else {
for(uint32_t j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((uint8_t)j);
color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + r)));
color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + g)));
color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + b)));
SetPaletteColor((uint8_t)j,color);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts the color balance of the image
* \param gamma can be from 0.1 to 5.
* \return true if everything is ok
* \sa GammaRGB
*/
bool CxImage::Gamma(float gamma)
{
if (!pDib) return false;
if (gamma <= 0.0f) return false;
double dinvgamma = 1/gamma;
double dMax = pow(255.0, dinvgamma) / 255.0;
uint8_t cTable[256]; //<nipper>
for (int32_t i=0;i<256;i++) {
cTable[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts the color balance indipendent for each color channel
* \param gammaR, gammaG, gammaB can be from 0.1 to 5.
* \return true if everything is ok
* \sa Gamma
*/
bool CxImage::GammaRGB(float gammaR, float gammaG, float gammaB)
{
if (!pDib) return false;
if (gammaR <= 0.0f) return false;
if (gammaG <= 0.0f) return false;
if (gammaB <= 0.0f) return false;
double dinvgamma, dMax;
int32_t i;
dinvgamma = 1/gammaR;
dMax = pow(255.0, dinvgamma) / 255.0;
uint8_t cTableR[256];
for (i=0;i<256;i++) {
cTableR[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
}
dinvgamma = 1/gammaG;
dMax = pow(255.0, dinvgamma) / 255.0;
uint8_t cTableG[256];
for (i=0;i<256;i++) {
cTableG[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
}
dinvgamma = 1/gammaB;
dMax = pow(255.0, dinvgamma) / 255.0;
uint8_t cTableB[256];
for (i=0;i<256;i++) {
cTableB[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
}
return Lut(cTableR, cTableG, cTableB);
}
////////////////////////////////////////////////////////////////////////////////
//#if !defined (_WIN32_WCE)
/**
* Adjusts the intensity of each pixel to the median intensity of its surrounding pixels.
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Median(int32_t Ksize)
{
if (!pDib) return false;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
int32_t i,j,k;
RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD));
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
for(j=-k2, i=0;j<kmax;j++)
for(k=-k2;k<kmax;k++)
if (IsInside(x+j,y+k))
kernel[i++]=BlindGetPixelColor(x+j,y+k);
qsort(kernel, i, sizeof(RGBQUAD), CompareColors);
tmp.SetPixelColor(x,y,kernel[i/2]);
}
}
}
free(kernel);
Transfer(tmp);
return true;
}
//#endif //_WIN32_WCE
////////////////////////////////////////////////////////////////////////////////
/**
* Adds an uniform noise to the image
* \param level: can be from 0 (no noise) to 255 (lot of noise).
* \return true if everything is ok
*/
bool CxImage::Noise(int32_t level)
{
if (!pDib) return false;
RGBQUAD color;
int32_t xmin,xmax,ymin,ymax,n;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = BlindGetPixelColor(x,y);
n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + n)));
n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + n)));
n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + n)));
BlindSetPixelColor(x,y,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Computes the bidimensional FFT or DFT of the image.
* - The images are processed as grayscale
* - If the dimensions of the image are a power of, 2 the FFT is performed automatically.
* - If dstReal and/or dstImag are NULL, the resulting images replaces the original(s).
* - Note: with 8 bits there is a HUGE loss in the dynamics. The function tries
* to keep an acceptable SNR, but 8bit = 48dB...
*
* \param srcReal, srcImag: source images: One can be NULL, but not both
* \param dstReal, dstImag: destination images. Can be NULL.
* \param direction: 1 = forward, -1 = inverse.
* \param bForceFFT: if true, the images are resampled to make the dimensions a power of 2.
* \param bMagnitude: if true, the real part returns the magnitude, the imaginary part returns the phase
* \return true if everything is ok
*/
bool CxImage::FFT2(CxImage* srcReal, CxImage* srcImag, CxImage* dstReal, CxImage* dstImag,
int32_t direction, bool bForceFFT, bool bMagnitude)
{
//check if there is something to convert
if (srcReal==NULL && srcImag==NULL) return false;
int32_t w,h;
//get width and height
if (srcReal) {
w=srcReal->GetWidth();
h=srcReal->GetHeight();
} else {
w=srcImag->GetWidth();
h=srcImag->GetHeight();
}
bool bXpow2 = IsPowerof2(w);
bool bYpow2 = IsPowerof2(h);
//if bForceFFT, width AND height must be powers of 2
if (bForceFFT && !(bXpow2 && bYpow2)) {
int32_t i;
i=0;
while((1<<i)<w) i++;
w=1<<i;
bXpow2=true;
i=0;
while((1<<i)<h) i++;
h=1<<i;
bYpow2=true;
}
// I/O images for FFT
CxImage *tmpReal,*tmpImag;
// select output
tmpReal = (dstReal) ? dstReal : srcReal;
tmpImag = (dstImag) ? dstImag : srcImag;
// src!=dst -> copy the image
if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false);
if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false);
// dst&&src are empty -> create new one, else turn to GrayScale
if (srcReal==0 && dstReal==0){
tmpReal = new CxImage(w,h,8);
tmpReal->Clear(0);
tmpReal->SetGrayPalette();
} else {
if (!tmpReal->IsGrayScale()) tmpReal->GrayScale();
}
if (srcImag==0 && dstImag==0){
tmpImag = new CxImage(w,h,8);
tmpImag->Clear(0);
tmpImag->SetGrayPalette();
} else {
if (!tmpImag->IsGrayScale()) tmpImag->GrayScale();
}
if (!(tmpReal->IsValid() && tmpImag->IsValid())){
if (srcReal==0 && dstReal==0) delete tmpReal;
if (srcImag==0 && dstImag==0) delete tmpImag;
return false;
}
//resample for FFT, if necessary
tmpReal->Resample(w,h,0);
tmpImag->Resample(w,h,0);
//ok, here we have 2 (w x h), grayscale images ready for a FFT
double* real;
double* imag;
int32_t j,k,m;
_complex **grid;
//double mean = tmpReal->Mean();
/* Allocate memory for the grid */
grid = (_complex **)malloc(w * sizeof(_complex));
for (k=0;k<w;k++) {
grid[k] = (_complex *)malloc(h * sizeof(_complex));
}
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
grid[k][j].x = tmpReal->GetPixelIndex(k,j)-128;
grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128;
}
}
//DFT buffers
double *real2,*imag2;
real2 = (double*)malloc(max(w,h) * sizeof(double));
imag2 = (double*)malloc(max(w,h) * sizeof(double));
/* Transform the rows */
real = (double *)malloc(w * sizeof(double));
imag = (double *)malloc(w * sizeof(double));
m=0;
while((1<<m)<w) m++;
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
real[k] = grid[k][j].x;
imag[k] = grid[k][j].y;
}
if (bXpow2) FFT(direction,m,real,imag);
else DFT(direction,w,real,imag,real2,imag2);
for (k=0;k<w;k++) {
grid[k][j].x = real[k];
grid[k][j].y = imag[k];
}
}
free(real);
free(imag);
/* Transform the columns */
real = (double *)malloc(h * sizeof(double));
imag = (double *)malloc(h * sizeof(double));
m=0;
while((1<<m)<h) m++;
for (k=0;k<w;k++) {
for (j=0;j<h;j++) {
real[j] = grid[k][j].x;
imag[j] = grid[k][j].y;
}
if (bYpow2) FFT(direction,m,real,imag);
else DFT(direction,h,real,imag,real2,imag2);
for (j=0;j<h;j++) {
grid[k][j].x = real[j];
grid[k][j].y = imag[j];
}
}
free(real);
free(imag);
free(real2);
free(imag2);
/* converting from double to byte, there is a HUGE loss in the dynamics
"nn" tries to keep an acceptable SNR, but 8bit=48dB: don't ask more */
double nn=pow((double)2,(double)log((double)max(w,h))/(double)log((double)2)-4);
//reversed gain for reversed transform
if (direction==-1) nn=1/nn;
//bMagnitude : just to see it on the screen
if (bMagnitude) nn*=4;
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
if (bMagnitude){
tmpReal->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(nn*(3+log(_cabs(grid[k][j])))))));
if (grid[k][j].x==0){
tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn)))));
} else {
tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn)))));
}
} else {
tmpReal->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128 + grid[k][j].x*nn))));
tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128 + grid[k][j].y*nn))));
}
}
}
for (k=0;k<w;k++) free (grid[k]);
free (grid);
if (srcReal==0 && dstReal==0) delete tmpReal;
if (srcImag==0 && dstImag==0) delete tmpImag;
return true;
}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::IsPowerof2(int32_t x)
{
int32_t i=0;
while ((1<<i)<x) i++;
if (x==(1<<i)) return true;
return false;
}
////////////////////////////////////////////////////////////////////////////////
/**
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of n=2^m points.
o(n)=n*log2(n)
dir = 1 gives forward transform
dir = -1 gives reverse transform
Written by Paul Bourke, July 1998
FFT algorithm by Cooley and Tukey, 1965
*/
bool CxImage::FFT(int32_t dir,int32_t m,double *x,double *y)
{
int32_t nn,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
nn = 1<<m;
/* Do the bit reversal */
i2 = nn >> 1;
j = 0;
for (i=0;i<nn-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<nn;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<nn;i++) {
x[i] /= (double)nn;
y[i] /= (double)nn;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
Direct fourier transform o(n)=n^2
Written by Paul Bourke, July 1998
*/
bool CxImage::DFT(int32_t dir,int32_t m,double *x1,double *y1,double *x2,double *y2)
{
int32_t i,k;
double arg;
double cosarg,sinarg;
for (i=0;i<m;i++) {
x2[i] = 0;
y2[i] = 0;
arg = - dir * 2.0 * PI * i / (double)m;
for (k=0;k<m;k++) {
cosarg = cos(k * arg);
sinarg = sin(k * arg);
x2[i] += (x1[k] * cosarg - y1[k] * sinarg);
y2[i] += (x1[k] * sinarg + y1[k] * cosarg);
}
}
/* Copy the data back */
if (dir == 1) {
for (i=0;i<m;i++) {
x1[i] = x2[i] / m;
y1[i] = y2[i] / m;
}
} else {
for (i=0;i<m;i++) {
x1[i] = x2[i];
y1[i] = y2[i];
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Combines different color components into a single image
* \param r,g,b: color channels
* \param a: alpha layer, can be NULL
* \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::Combine(CxImage* r,CxImage* g,CxImage* b,CxImage* a, int32_t colorspace)
{
if (r==0 || g==0 || b==0) return false;
int32_t w = r->GetWidth();
int32_t h = r->GetHeight();
Create(w,h,24);
g->Resample(w,h);
b->Resample(w,h);
if (a) {
a->Resample(w,h);
#if CXIMAGE_SUPPORT_ALPHA
AlphaCreate();
#endif //CXIMAGE_SUPPORT_ALPHA
}
RGBQUAD c;
for (int32_t y=0;y<h;y++){
info.nProgress = (int32_t)(100*y/h); //<Anatoly Ivasyuk>
for (int32_t x=0;x<w;x++){
c.rgbRed=r->GetPixelIndex(x,y);
c.rgbGreen=g->GetPixelIndex(x,y);
c.rgbBlue=b->GetPixelIndex(x,y);
switch (colorspace){
case 1:
BlindSetPixelColor(x,y,HSLtoRGB(c));
break;
case 2:
BlindSetPixelColor(x,y,YUVtoRGB(c));
break;
case 3:
BlindSetPixelColor(x,y,YIQtoRGB(c));
break;
case 4:
BlindSetPixelColor(x,y,XYZtoRGB(c));
break;
default:
BlindSetPixelColor(x,y,c);
}
#if CXIMAGE_SUPPORT_ALPHA
if (a) AlphaSet(x,y,a->GetPixelIndex(x,y));
#endif //CXIMAGE_SUPPORT_ALPHA
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Smart blurring to remove small defects, dithering or artifacts.
* \param radius: normally between 0.01 and 0.5
* \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1
* \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::Repair(float radius, int32_t niterations, int32_t colorspace)
{
if (!IsValid()) return false;
int32_t w = GetWidth();
int32_t h = GetHeight();
CxImage r,g,b;
r.Create(w,h,8);
g.Create(w,h,8);
b.Create(w,h,8);
switch (colorspace){
case 1:
SplitHSL(&r,&g,&b);
break;
case 2:
SplitYUV(&r,&g,&b);
break;
case 3:
SplitYIQ(&r,&g,&b);
break;
case 4:
SplitXYZ(&r,&g,&b);
break;
default:
SplitRGB(&r,&g,&b);
}
for (int32_t i=0; i<niterations; i++){
RepairChannel(&r,radius);
RepairChannel(&g,radius);
RepairChannel(&b,radius);
}
CxImage* a=NULL;
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()){
a = new CxImage();
AlphaSplit(a);
}
#endif
Combine(&r,&g,&b,a,colorspace);
delete a;
return true;
}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::RepairChannel(CxImage *ch, float radius)
{
if (ch==NULL) return false;
CxImage tmp(*ch);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t w = ch->GetWidth()-1;
int32_t h = ch->GetHeight()-1;
double correction,ix,iy,ixx,ixy,iyy;
int32_t x,y,xy0,xp1,xm1,yp1,ym1;
for(x=1; x<w; x++){
for(y=1; y<h; y++){
xy0 = ch->BlindGetPixelIndex(x,y);
xm1 = ch->BlindGetPixelIndex(x-1,y);
xp1 = ch->BlindGetPixelIndex(x+1,y);
ym1 = ch->BlindGetPixelIndex(x,y-1);
yp1 = ch->BlindGetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->BlindGetPixelIndex(x+1,y+1) + ch->BlindGetPixelIndex(x-1,y-1) -
ch->BlindGetPixelIndex(x-1,y+1) - ch->BlindGetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
for (x=0;x<=w;x++){
for(y=0; y<=h; y+=h){
xy0 = ch->BlindGetPixelIndex(x,y);
xm1 = ch->GetPixelIndex(x-1,y);
xp1 = ch->GetPixelIndex(x+1,y);
ym1 = ch->GetPixelIndex(x,y-1);
yp1 = ch->GetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
for (x=0;x<=w;x+=w){
for (y=0;y<=h;y++){
xy0 = ch->BlindGetPixelIndex(x,y);
xm1 = ch->GetPixelIndex(x-1,y);
xp1 = ch->GetPixelIndex(x+1,y);
ym1 = ch->GetPixelIndex(x,y-1);
yp1 = ch->GetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
}
}
ch->Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \return true if everything is ok
*/
bool CxImage::Contour()
{
if (!pDib) return false;
int32_t Ksize = 3;
int32_t k2 = Ksize/2;
int32_t kmax= Ksize-k2;
int32_t i,j,k;
uint8_t maxr,maxg,maxb;
RGBQUAD pix1,pix2;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
pix1 = BlindGetPixelColor(x,y);
maxr=maxg=maxb=0;
for(j=-k2, i=0;j<kmax;j++){
for(k=-k2;k<kmax;k++, i++){
if (!IsInside(x+j,y+k)) continue;
pix2 = BlindGetPixelColor(x+j,y+k);
if ((pix2.rgbBlue-pix1.rgbBlue)>maxb) maxb = pix2.rgbBlue;
if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen;
if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed;
}
}
pix1.rgbBlue=(uint8_t)(255-maxb);
pix1.rgbGreen=(uint8_t)(255-maxg);
pix1.rgbRed=(uint8_t)(255-maxr);
tmp.BlindSetPixelColor(x,y,pix1);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adds a random offset to each pixel in the image
* \param radius: maximum pixel displacement
* \return true if everything is ok
*/
bool CxImage::Jitter(int32_t radius)
{
if (!pDib) return false;
int32_t nx,ny;
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
nx=x+(int32_t)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
ny=y+(int32_t)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
if (!IsInside(nx,ny)) {
nx=x;
ny=y;
}
if (head.biClrUsed==0){
tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(nx,ny));
} else {
tmp.BlindSetPixelIndex(x,y,BlindGetPixelIndex(nx,ny));
}
#if CXIMAGE_SUPPORT_ALPHA
tmp.AlphaSet(x,y,AlphaGet(nx,ny));
#endif //CXIMAGE_SUPPORT_ALPHA
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* generates a 1-D convolution matrix to be used for each pass of
* a two-pass gaussian blur. Returns the length of the matrix.
* \author [nipper]
*/
int32_t CxImage::gen_convolve_matrix (float radius, float **cmatrix_p)
{
int32_t matrix_length;
int32_t matrix_midpoint;
float* cmatrix;
int32_t i,j;
float std_dev;
float sum;
/* we want to generate a matrix that goes out a certain radius
* from the center, so we have to go out ceil(rad-0.5) pixels,
* inlcuding the center pixel. Of course, that's only in one direction,
* so we have to go the same amount in the other direction, but not count
* the center pixel again. So we double the previous result and subtract
* one.
* The radius parameter that is passed to this function is used as
* the standard deviation, and the radius of effect is the
* standard deviation * 2. It's a little confusing.
* <DP> modified scaling, so that matrix_lenght = 1+2*radius parameter
*/
radius = (float)fabs(0.5*radius) + 0.25f;
std_dev = radius;
radius = std_dev * 2;
/* go out 'radius' in each direction */
matrix_length = int32_t (2 * ceil(radius-0.5) + 1);
if (matrix_length <= 0) matrix_length = 1;
matrix_midpoint = matrix_length/2 + 1;
*cmatrix_p = new float[matrix_length];
cmatrix = *cmatrix_p;
/* Now we fill the matrix by doing a numeric integration approximation
* from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
* We do the bottom half, mirror it to the top half, then compute the
* center point. Otherwise asymmetric quantization errors will occur.
* The formula to integrate is e^-(x^2/2s^2).
*/
/* first we do the top (right) half of matrix */
for (i = matrix_length/2 + 1; i < matrix_length; i++)
{
float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
sum = 0;
for (j = 1; j <= 50; j++)
{
if ( base_x+0.02*j <= radius )
sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[i] = sum/50;
}
/* mirror the thing to the bottom half */
for (i=0; i<=matrix_length/2; i++) {
cmatrix[i] = cmatrix[matrix_length-1-i];
}
/* find center val -- calculate an odd number of quanta to make it symmetric,
* even if the center point is weighted slightly higher than others. */
sum = 0;
for (j=0; j<=50; j++)
{
sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[matrix_length/2] = sum/51;
/* normalize the distribution by scaling the total sum to one */
sum=0;
for (i=0; i<matrix_length; i++) sum += cmatrix[i];
for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
return matrix_length;
}
////////////////////////////////////////////////////////////////////////////////
/**
* generates a lookup table for every possible product of 0-255 and
* each value in the convolution matrix. The returned array is
* indexed first by matrix position, then by input multiplicand (?)
* value.
* \author [nipper]
*/
float* CxImage::gen_lookup_table (float *cmatrix, int32_t cmatrix_length)
{
float* lookup_table = new float[cmatrix_length * 256];
float* lookup_table_p = lookup_table;
float* cmatrix_p = cmatrix;
for (int32_t i=0; i<cmatrix_length; i++)
{
for (int32_t j=0; j<256; j++)
{
*(lookup_table_p++) = *cmatrix_p * (float)j;
}
cmatrix_p++;
}
return lookup_table;
}
////////////////////////////////////////////////////////////////////////////////
/**
* this function is written as if it is blurring a column at a time,
* even though it can operate on rows, too. There is no difference
* in the processing of the lines, at least to the blur_line function.
* \author [nipper]
*/
void CxImage::blur_line (float *ctable, float *cmatrix, int32_t cmatrix_length, uint8_t* cur_col, uint8_t* dest_col, int32_t y, int32_t bytes)
{
float scale;
float sum;
int32_t i=0, j=0;
int32_t row;
int32_t cmatrix_middle = cmatrix_length/2;
float *cmatrix_p;
uint8_t *cur_col_p;
uint8_t *cur_col_p1;
uint8_t *dest_col_p;
float *ctable_p;
/* this first block is the same as the non-optimized version --
* it is only used for very small pictures, so speed isn't a
* big concern.
*/
if (cmatrix_length > y)
{
for (row = 0; row < y ; row++)
{
scale=0;
/* find the scale factor */
for (j = 0; j < y ; j++)
{
/* if the index is in bounds, add it to the scale counter */
if ((j + cmatrix_middle - row >= 0) &&
(j + cmatrix_middle - row < cmatrix_length))
scale += cmatrix[j + cmatrix_middle - row];
}
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = 0; j < y; j++)
{
if ((j >= row - cmatrix_middle) &&
(j <= row + cmatrix_middle))
sum += cur_col[j*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (uint8_t)(0.5f + sum / scale);
}
}
}
else
{
/* for the edge condition, we only use available info and scale to one */
for (row = 0; row < cmatrix_middle; row++)
{
/* find scale factor */
scale=0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++)
{
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (uint8_t)(0.5f + sum / scale);
}
}
/* go through each pixel in each col */
dest_col_p = dest_col + row*bytes;
for (; row < y-cmatrix_middle; row++)
{
cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
for (i = 0; i<bytes; i++)
{
sum = 0;
cmatrix_p = cmatrix;
cur_col_p1 = cur_col_p;
ctable_p = ctable;
for (j = cmatrix_length; j>0; j--)
{
sum += *(ctable_p + *cur_col_p1);
cur_col_p1 += bytes;
ctable_p += 256;
}
cur_col_p++;
*(dest_col_p++) = (uint8_t)(0.5f + sum);
}
}
/* for the edge condition , we only use available info, and scale to one */
for (; row < y; row++)
{
/* find scale factor */
scale=0;
for (j = 0; j< y-row + cmatrix_middle; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = 0; j<y-row + cmatrix_middle; j++)
{
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (uint8_t) (0.5f + sum / scale);
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [DP]
*/
void CxImage::blur_text (uint8_t threshold, uint8_t decay, uint8_t max_depth, CxImage* iSrc, CxImage* iDst, uint8_t bytes)
{
int32_t x,y,z,m;
uint8_t *pSrc, *pSrc2, *pSrc3, *pDst;
uint8_t step,n;
int32_t pivot;
if (max_depth<1) max_depth = 1;
int32_t nmin,nmax,xmin,xmax,ymin,ymax;
xmin = ymin = 0;
xmax = iSrc->head.biWidth;
ymax = iSrc->head.biHeight;
if (xmin==xmax || ymin==ymax) return;
nmin = xmin * bytes;
nmax = xmax * bytes;
CImageIterator itSrc(iSrc);
CImageIterator itTmp(iDst);
double dbScaler = 100.0f/(ymax-ymin)/bytes;
for (n=0; n<bytes; n++){
for (y=ymin+1;y<(ymax-1);y++)
{
if (info.nEscape) break;
info.nProgress = (int32_t)((y-ymin)*dbScaler*(1+n));
pSrc = itSrc.GetRow(y);
pSrc2 = itSrc.GetRow(y+1);
pSrc3 = itSrc.GetRow(y-1);
pDst = itTmp.GetRow(y);
//scan left to right
for (x=n+nmin /*,i=xmin*/; x<(nmax-1); x+=bytes /*,i++*/)
{
z=x+bytes;
pivot = pSrc[z]-threshold;
//find upper corner
if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
while (z<nmax && pSrc2[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
z+=bytes;
}
m = z-x;
m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (uint8_t)((pSrc[x+bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x+m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
}
}
//find lower corner
z=x+bytes;
if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
while (z<nmax && pSrc3[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
z+=bytes;
}
m = z-x;
m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (uint8_t)((pSrc[x+bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x+m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
}
}
}
//scan right to left
for (x=nmax-1-n /*,i=(xmax-1)*/; x>0; x-=bytes /*,i--*/)
{
z=x-bytes;
pivot = pSrc[z]-threshold;
//find upper corner
if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
while (z>n && pSrc2[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
z-=bytes;
}
m = x-z;
m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (uint8_t)((pSrc[x-bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x-m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
}
}
//find lower corner
z=x-bytes;
if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
while (z>n && pSrc3[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
z-=bytes;
}
m = x-z;
m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
if (m>max_depth) m = max_depth;
step = (uint8_t)((pSrc[x-bytes]-pSrc[x])/(m+1));
while (m-->1){
pDst[x-m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [DP]
*/
bool CxImage::TextBlur(uint8_t threshold, uint8_t decay, uint8_t max_depth, bool bBlurHorizontal, bool bBlurVertical, CxImage* iDst)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
uint16_t bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
return false;
}
CxImage tmp(*this);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
if (bBlurHorizontal)
blur_text(threshold, decay, max_depth, this, &tmp, head.biBitCount>>3);
if (bBlurVertical){
CxImage src2(*this);
src2.RotateLeft();
tmp.RotateLeft();
blur_text(threshold, decay, max_depth, &src2, &tmp, head.biBitCount>>3);
tmp.RotateRight();
}
#if CXIMAGE_SUPPORT_SELECTION
//restore the non selected region
if (pSelection){
for(int32_t y=0; y<head.biHeight; y++){
for(int32_t x=0; x<head.biWidth; x++){
if (!BlindSelectionIsInside(x,y)){
tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
}
}
}
}
#endif //CXIMAGE_SUPPORT_SELECTION
//if necessary, restore the original BPP and palette
if (pPalette){
tmp.DecreaseBpp(bpp, true, pPalette);
delete [] pPalette;
}
if (iDst) iDst->Transfer(tmp);
else Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [nipper]; changes [DP]
*/
bool CxImage::GaussianBlur(float radius /*= 1.0f*/, CxImage* iDst /*= 0*/)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
uint16_t bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
return false;
}
CxImage tmp_x(*this, false, true, true);
if (!tmp_x.IsValid()){
strcpy(info.szLastError,tmp_x.GetLastError());
return false;
}
// generate convolution matrix and make sure it's smaller than each dimension
float *cmatrix = NULL;
int32_t cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
// generate lookup table
float *ctable = gen_lookup_table(cmatrix, cmatrix_length);
int32_t x,y;
int32_t bypp = head.biBitCount>>3;
CImageIterator itSrc(this);
CImageIterator itTmp(&tmp_x);
double dbScaler = 50.0f/head.biHeight;
// blur the rows
for (y=0;y<head.biHeight;y++)
{
if (info.nEscape) break;
info.nProgress = (int32_t)(y*dbScaler);
blur_line(ctable, cmatrix, cmatrix_length, itSrc.GetRow(y), itTmp.GetRow(y), head.biWidth, bypp);
}
CxImage tmp_y(tmp_x, false, true, true);
if (!tmp_y.IsValid()){
strcpy(info.szLastError,tmp_y.GetLastError());
return false;
}
CImageIterator itDst(&tmp_y);
// blur the cols
uint8_t* cur_col = (uint8_t*)malloc(bypp*head.biHeight);
uint8_t* dest_col = (uint8_t*)malloc(bypp*head.biHeight);
dbScaler = 50.0f/head.biWidth;
for (x=0;x<head.biWidth;x++)
{
if (info.nEscape) break;
info.nProgress = (int32_t)(50.0f+x*dbScaler);
itTmp.GetCol(cur_col, x);
itDst.GetCol(dest_col, x);
blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, head.biHeight, bypp);
itDst.SetCol(dest_col, x);
}
free(cur_col);
free(dest_col);
delete [] cmatrix;
delete [] ctable;
#if CXIMAGE_SUPPORT_SELECTION
//restore the non selected region
if (pSelection){
for(y=0; y<head.biHeight; y++){
for(x=0; x<head.biWidth; x++){
if (!BlindSelectionIsInside(x,y)){
tmp_y.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
}
}
}
}
#endif //CXIMAGE_SUPPORT_SELECTION
//if necessary, restore the original BPP and palette
if (pPalette){
tmp_y.DecreaseBpp(bpp, false, pPalette);
if (iDst) DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
if (iDst) iDst->Transfer(tmp_y);
else Transfer(tmp_y);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [DP],[nipper]
*/
bool CxImage::SelectiveBlur(float radius, uint8_t threshold, CxImage* iDst)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
uint16_t bpp = GetBpp();
CxImage Tmp(*this, true, true, true);
if (!Tmp.IsValid()){
strcpy(info.szLastError,Tmp.GetLastError());
return false;
}
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!Tmp.IncreaseBpp(24)){
delete [] pPalette;
return false;
}
}
CxImage Dst(Tmp, true, true, true);
if (!Dst.IsValid()){
strcpy(info.szLastError,Dst.GetLastError());
delete [] pPalette;
return false;
}
//build the difference mask
uint8_t thresh_dw = (uint8_t)max( 0 ,(int32_t)(128 - threshold));
uint8_t thresh_up = (uint8_t)min(255,(int32_t)(128 + threshold));
int32_t kernel[]={-100,-100,-100,-100,801,-100,-100,-100,-100};
if (!Tmp.Filter(kernel,3,800,128)){
strcpy(info.szLastError,Tmp.GetLastError());
delete [] pPalette;
return false;
}
//if the image has no selection, build a selection for the whole image
#if CXIMAGE_SUPPORT_SELECTION
if (!Tmp.SelectionIsValid()){
Tmp.SelectionCreate();
Tmp.SelectionClear(255);
}
int32_t xmin,xmax,ymin,ymax;
xmin = Tmp.info.rSelectionBox.left;
xmax = Tmp.info.rSelectionBox.right;
ymin = Tmp.info.rSelectionBox.bottom;
ymax = Tmp.info.rSelectionBox.top;
//modify the selection where the difference mask is over the threshold
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
if(Tmp.BlindSelectionIsInside(x,y)){
RGBQUAD c = Tmp.BlindGetPixelColor(x,y);
if ((c.rgbRed < thresh_dw || c.rgbRed > thresh_up) ||
(c.rgbGreen < thresh_dw || c.rgbGreen > thresh_up) ||
(c.rgbBlue < thresh_dw || c.rgbBlue > thresh_up))
{
Tmp.SelectionSet(x,y,0);
}
}
}
}
//blur the image (only in the selected pixels)
Dst.SelectionCopy(Tmp);
if (!Dst.GaussianBlur(radius)){
strcpy(info.szLastError,Dst.GetLastError());
delete [] pPalette;
return false;
}
//restore the original selection
Dst.SelectionCopy(*this);
#endif //CXIMAGE_SUPPORT_SELECTION
//if necessary, restore the original BPP and palette
if (pPalette){
Dst.DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
if (iDst) iDst->Transfer(Dst);
else Transfer(Dst);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* sharpen the image by subtracting a blurred copy from the original image.
* \param radius: width in pixels of the blurring effect. Range: >0; default = 5.
* \param amount: strength of the filter. Range: 0.0 (none) to 1.0 (max); default = 0.5
* \param threshold: difference, between blurred and original pixel, to trigger the filter
* Range: 0 (always triggered) to 255 (never triggered); default = 0.
* \return true if everything is ok
* \author [nipper]; changes [DP]
*/
bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int32_t threshold /*= 0*/)
{
if (!pDib) return false;
RGBQUAD* pPalette=NULL;
uint16_t bpp = GetBpp();
//the routine is optimized for RGB or GrayScale images
if (!(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
return false;
}
CxImage iDst;
if (!GaussianBlur(radius,&iDst))
return false;
CImageIterator itSrc(this);
CImageIterator itDst(&iDst);
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax)
return false;
double dbScaler = 100.0/(ymax-ymin);
int32_t bypp = head.biBitCount>>3;
// merge the source and destination (which currently contains
// the blurred version) images
for (int32_t y=ymin; y<ymax; y++)
{
if (info.nEscape) break;
info.nProgress = (int32_t)((y-ymin)*dbScaler);
// get source row
uint8_t* cur_row = itSrc.GetRow(y);
// get dest row
uint8_t* dest_row = itDst.GetRow(y);
// combine the two
for (int32_t x=xmin; x<xmax; x++) {
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
for (int32_t b=0, z=x*bypp; b<bypp; b++, z++){
int32_t diff = cur_row[z] - dest_row[z];
// do tresholding
if (abs(diff) < threshold){
dest_row[z] = cur_row[z];
} else {
dest_row[z] = (uint8_t)min(255, max(0,(int32_t)(cur_row[z] + amount * diff)));
}
}
}
}
}
//if necessary, restore the original BPP and palette
if (pPalette){
iDst.DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
Transfer(iDst);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Apply a look up table to the image.
* \param pLut: uint8_t[256] look up table
* \return true if everything is ok
*/
bool CxImage::Lut(uint8_t* pLut)
{
if (!pDib || !pLut) return false;
RGBQUAD color;
double dbScaler;
if (head.biClrUsed==0){
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
// faster loop for full image
uint8_t *iSrc=info.pImage;
for(uint32_t i=0; i < head.biSizeImage ; i++){
*iSrc++ = pLut[*iSrc];
}
return true;
}
if (xmin==xmax || ymin==ymax)
return false;
dbScaler = 100.0/(ymax-ymin);
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)((y-ymin)*dbScaler); //<Anatoly Ivasyuk>
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = BlindGetPixelColor(x,y);
color.rgbRed = pLut[color.rgbRed];
color.rgbGreen = pLut[color.rgbGreen];
color.rgbBlue = pLut[color.rgbBlue];
BlindSetPixelColor(x,y,color);
}
}
}
#if CXIMAGE_SUPPORT_SELECTION
} else if (pSelection && (head.biBitCount==8) && IsGrayScale()){
int32_t xmin,xmax,ymin,ymax;
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
if (xmin==xmax || ymin==ymax)
return false;
dbScaler = 100.0/(ymax-ymin);
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)((y-ymin)*dbScaler);
for(int32_t x=xmin; x<xmax; x++){
if (BlindSelectionIsInside(x,y))
{
BlindSetPixelIndex(x,y,pLut[BlindGetPixelIndex(x,y)]);
}
}
}
#endif //CXIMAGE_SUPPORT_SELECTION
} else {
bool bIsGrayScale = IsGrayScale();
for(uint32_t j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((uint8_t)j);
color.rgbRed = pLut[color.rgbRed];
color.rgbGreen = pLut[color.rgbGreen];
color.rgbBlue = pLut[color.rgbBlue];
SetPaletteColor((uint8_t)j,color);
}
if (bIsGrayScale) GrayScale();
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Apply an indipendent look up table for each channel
* \param pLutR, pLutG, pLutB, pLutA: uint8_t[256] look up tables
* \return true if everything is ok
*/
bool CxImage::Lut(uint8_t* pLutR, uint8_t* pLutG, uint8_t* pLutB, uint8_t* pLutA)
{
if (!pDib || !pLutR || !pLutG || !pLutB) return false;
RGBQUAD color;
double dbScaler;
if (head.biClrUsed==0){
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax)
return false;
dbScaler = 100.0/(ymax-ymin);
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)((y-ymin)*dbScaler);
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = BlindGetPixelColor(x,y);
color.rgbRed = pLutR[color.rgbRed];
color.rgbGreen = pLutG[color.rgbGreen];
color.rgbBlue = pLutB[color.rgbBlue];
if (pLutA) color.rgbReserved=pLutA[color.rgbReserved];
BlindSetPixelColor(x,y,color,true);
}
}
}
} else {
bool bIsGrayScale = IsGrayScale();
for(uint32_t j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((uint8_t)j);
color.rgbRed = pLutR[color.rgbRed];
color.rgbGreen = pLutG[color.rgbGreen];
color.rgbBlue = pLutB[color.rgbBlue];
SetPaletteColor((uint8_t)j,color);
}
if (bIsGrayScale) GrayScale();
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Use the RedEyeRemove function to remove the red-eye effect that frequently
* occurs in photographs of humans and animals. You must select the region
* where the function will filter the red channel.
* \param strength: range from 0.0f (no effect) to 1.0f (full effect). Default = 0.8
* \return true if everything is ok
*/
bool CxImage::RedEyeRemove(float strength)
{
if (!pDib) return false;
RGBQUAD color;
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax)
return false;
if (strength<0.0f) strength = 0.0f;
if (strength>1.0f) strength = 1.0f;
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
float a = 1.0f-5.0f*((float)((x-0.5f*(xmax+xmin))*(x-0.5f*(xmax+xmin))+(y-0.5f*(ymax+ymin))*(y-0.5f*(ymax+ymin))))/((float)((xmax-xmin)*(ymax-ymin)));
if (a<0) a=0;
color = BlindGetPixelColor(x,y);
color.rgbRed = (uint8_t)(a*min(color.rgbGreen,color.rgbBlue)+(1.0f-a)*color.rgbRed);
BlindSetPixelColor(x,y,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Changes the saturation of the image.
* \param saturation: can be from -100 to 100, positive values increase the saturation.
* \param colorspace: can be 1 (HSL) or 2 (YUV).
* \return true if everything is ok
*/
bool CxImage::Saturate(const int32_t saturation, const int32_t colorspace)
{
if (!pDib)
return false;
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax)
return false;
uint8_t cTable[256];
switch(colorspace)
{
case 1:
{
for (int32_t i=0;i<256;i++) {
cTable[i] = (uint8_t)max(0,min(255,(int32_t)(i + saturation)));
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
RGBQUAD c = RGBtoHSL(BlindGetPixelColor(x,y));
c.rgbGreen = cTable[c.rgbGreen];
c = HSLtoRGB(c);
BlindSetPixelColor(x,y,c);
}
}
}
}
break;
case 2:
{
for (int32_t i=0;i<256;i++) {
cTable[i] = (uint8_t)max(0,min(255,(int32_t)((i-128)*(100 + saturation)/100.0f + 128.5f)));
}
for(int32_t y=ymin; y<ymax; y++){
info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
if (info.nEscape) break;
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
RGBQUAD c = RGBtoYUV(BlindGetPixelColor(x,y));
c.rgbGreen = cTable[c.rgbGreen];
c.rgbBlue = cTable[c.rgbBlue];
c = YUVtoRGB(c);
BlindSetPixelColor(x,y,c);
}
}
}
}
break;
default:
strcpy(info.szLastError,"Saturate: wrong colorspace");
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Solarize: convert all colors above a given lightness level into their negative
* \param level : lightness threshold. Range = 0 to 255; default = 128.
* \param bLinkedChannels: true = compare with luminance, preserve colors (default)
* false = compare with independent R,G,B levels
* \return true if everything is ok
* \author [Priyank Bolia] (priyank_bolia(at)yahoo(dot)com); changes [DP]
*/
bool CxImage::Solarize(uint8_t level, bool bLinkedChannels)
{
if (!pDib) return false;
int32_t xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (head.biBitCount<=8){
if (IsGrayScale()){ //GRAYSCALE, selection
for(int32_t y=ymin; y<ymax; y++){
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
uint8_t index = BlindGetPixelIndex(x,y);
RGBQUAD color = GetPaletteColor(index);
if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
BlindSetPixelIndex(x,y,255-index);
}
}
}
}
} else { //PALETTE, full image
RGBQUAD* ppal=GetPalette();
for(uint32_t i=0;i<head.biClrUsed;i++){
RGBQUAD color = GetPaletteColor((uint8_t)i);
if (bLinkedChannels){
if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
ppal[i].rgbBlue =(uint8_t)(255-ppal[i].rgbBlue);
ppal[i].rgbGreen =(uint8_t)(255-ppal[i].rgbGreen);
ppal[i].rgbRed =(uint8_t)(255-ppal[i].rgbRed);
}
} else {
if (color.rgbBlue>level) ppal[i].rgbBlue =(uint8_t)(255-ppal[i].rgbBlue);
if (color.rgbGreen>level) ppal[i].rgbGreen =(uint8_t)(255-ppal[i].rgbGreen);
if (color.rgbRed>level) ppal[i].rgbRed =(uint8_t)(255-ppal[i].rgbRed);
}
}
}
} else { //RGB, selection
for(int32_t y=ymin; y<ymax; y++){
for(int32_t x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
RGBQUAD color = BlindGetPixelColor(x,y);
if (bLinkedChannels){
if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
color.rgbRed = (uint8_t)(255-color.rgbRed);
color.rgbGreen = (uint8_t)(255-color.rgbGreen);
color.rgbBlue = (uint8_t)(255-color.rgbBlue);
}
} else {
if (color.rgbBlue>level) color.rgbBlue =(uint8_t)(255-color.rgbBlue);
if (color.rgbGreen>level) color.rgbGreen =(uint8_t)(255-color.rgbGreen);
if (color.rgbRed>level) color.rgbRed =(uint8_t)(255-color.rgbRed);
}
BlindSetPixelColor(x,y,color);
}
}
}
}
//invert transparent color only in case of full image processing
if (pSelection==0 || (!IsGrayScale() && IsIndexed())){
if (bLinkedChannels){
if ((uint8_t)RGB2GRAY(info.nBkgndColor.rgbRed,info.nBkgndColor.rgbGreen,info.nBkgndColor.rgbBlue)>level){
info.nBkgndColor.rgbBlue = (uint8_t)(255-info.nBkgndColor.rgbBlue);
info.nBkgndColor.rgbGreen = (uint8_t)(255-info.nBkgndColor.rgbGreen);
info.nBkgndColor.rgbRed = (uint8_t)(255-info.nBkgndColor.rgbRed);
}
} else {
if (info.nBkgndColor.rgbBlue>level) info.nBkgndColor.rgbBlue = (uint8_t)(255-info.nBkgndColor.rgbBlue);
if (info.nBkgndColor.rgbGreen>level) info.nBkgndColor.rgbGreen = (uint8_t)(255-info.nBkgndColor.rgbGreen);
if (info.nBkgndColor.rgbRed>level) info.nBkgndColor.rgbRed = (uint8_t)(255-info.nBkgndColor.rgbRed);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the RGB triplets to and from different colorspace
* \param dstColorSpace: destination colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \param srcColorSpace: source colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::ConvertColorSpace(const int32_t dstColorSpace, const int32_t srcColorSpace)
{
if (!pDib)
return false;
if (dstColorSpace == srcColorSpace)
return true;
int32_t w = GetWidth();
int32_t h = GetHeight();
for (int32_t y=0;y<h;y++){
info.nProgress = (int32_t)(100*y/h);
if (info.nEscape) break;
for (int32_t x=0;x<w;x++){
RGBQUAD c = BlindGetPixelColor(x,y);
switch (srcColorSpace){
case 0:
break;
case 1:
c = HSLtoRGB(c);
break;
case 2:
c = YUVtoRGB(c);
break;
case 3:
c = YIQtoRGB(c);
break;
case 4:
c = XYZtoRGB(c);
break;
default:
strcpy(info.szLastError,"ConvertColorSpace: unknown source colorspace");
return false;
}
switch (dstColorSpace){
case 0:
break;
case 1:
c = RGBtoHSL(c);
break;
case 2:
c = RGBtoYUV(c);
break;
case 3:
c = RGBtoYIQ(c);
break;
case 4:
c = RGBtoXYZ(c);
break;
default:
strcpy(info.szLastError,"ConvertColorSpace: unknown destination colorspace");
return false;
}
BlindSetPixelColor(x,y,c);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Finds the optimal (global or local) treshold for image binarization
* \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
* \param pBox: region from where the threshold is computed; 0 = full image (default).
* \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
* the pContrastMask image must be grayscale with same with and height of the current image,
* can be obtained from the current image with a filter:
* CxImage iContrastMask(*image,true,false,false);
* iContrastMask.GrayScale();
* int32_t edge[]={-1,-1,-1,-1,8,-1,-1,-1,-1};
* iContrastMask.Filter(edge,3,1,0);
* int32_t blur[]={1,1,1,1,1,1,1,1,1};
* iContrastMask.Filter(blur,3,9,0);
* \return optimal threshold; -1 = error.
* \sa AdaptiveThreshold
*/
int32_t CxImage::OptimalThreshold(int32_t method, RECT * pBox, CxImage* pContrastMask)
{
if (!pDib)
return false;
if (head.biBitCount!=8){
strcpy(info.szLastError,"OptimalThreshold works only on 8 bit images");
return -1;
}
if (pContrastMask){
if (!pContrastMask->IsValid() ||
!pContrastMask->IsGrayScale() ||
pContrastMask->GetWidth() != GetWidth() ||
pContrastMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"OptimalThreshold invalid ContrastMask");
return -1;
}
}
int32_t xmin,xmax,ymin,ymax;
if (pBox){
xmin = max(pBox->left,0);
xmax = min(pBox->right,head.biWidth);
ymin = max(pBox->bottom,0);
ymax = min(pBox->top,head.biHeight);
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin>=xmax || ymin>=ymax)
return -1;
double p[256];
memset(p, 0, 256*sizeof(double));
//build histogram
for (int32_t y = ymin; y<ymax; y++){
uint8_t* pGray = GetBits(y) + xmin;
uint8_t* pContr = 0;
if (pContrastMask) pContr = pContrastMask->GetBits(y) + xmin;
for (int32_t x = xmin; x<xmax; x++){
uint8_t n = *pGray++;
if (pContr){
if (*pContr) p[n]++;
pContr++;
} else {
p[n]++;
}
}
}
//find histogram limits
int32_t gray_min = 0;
while (gray_min<255 && p[gray_min]==0) gray_min++;
int32_t gray_max = 255;
while (gray_max>0 && p[gray_max]==0) gray_max--;
if (gray_min > gray_max)
return -1;
if (gray_min == gray_max){
if (gray_min == 0)
return 0;
else
return gray_max-1;
}
//compute total moments 0th,1st,2nd order
int32_t i,k;
double w_tot = 0;
double m_tot = 0;
double q_tot = 0;
for (i = gray_min; i <= gray_max; i++){
w_tot += p[i];
m_tot += i*p[i];
q_tot += i*i*p[i];
}
double L, L1max, L2max, L3max, L4max; //objective functions
int32_t th1,th2,th3,th4; //optimal thresholds
L1max = L2max = L3max = L4max = 0;
th1 = th2 = th3 = th4 = -1;
double w1, w2, m1, m2, q1, q2, s1, s2;
w1 = m1 = q1 = 0;
for (i = gray_min; i < gray_max; i++){
w1 += p[i];
w2 = w_tot - w1;
m1 += i*p[i];
m2 = m_tot - m1;
q1 += i*i*p[i];
q2 = q_tot - q1;
s1 = q1/w1-m1*m1/w1/w1; //s1 = q1/w1-pow(m1/w1,2);
s2 = q2/w2-m2*m2/w2/w2; //s2 = q2/w2-pow(m2/w2,2);
//Otsu
L = -(s1*w1 + s2*w2); //implemented as definition
//L = w1 * w2 * (m2/w2 - m1/w1)*(m2/w2 - m1/w1); //implementation that doesn't need s1 & s2
if (L1max < L || th1<0){
L1max = L;
th1 = i;
}
//Kittler and Illingworth
if (s1>0 && s2>0){
L = w1*log(w1/sqrt(s1))+w2*log(w2/sqrt(s2));
//L = w1*log(w1*w1/s1)+w2*log(w2*w2/s2);
if (L2max < L || th2<0){
L2max = L;
th2 = i;
}
}
//max entropy
L = 0;
for (k=gray_min;k<=i;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w1)/w1;
for (k;k<=gray_max;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w2)/w2;
if (L3max < L || th3<0){
L3max = L;
th3 = i;
}
//potential difference (based on Electrostatic Binarization method by J. Acharya & G. Sreechakra)
// L=-fabs(vdiff/vsum); � molto selettivo, sembra che L=-fabs(vdiff) o L=-(vsum)
// abbiano lo stesso valore di soglia... il che semplificherebbe molto la routine
double vdiff = 0;
for (k=gray_min;k<=i;k++)
vdiff += p[k]*(i-k)*(i-k);
double vsum = vdiff;
for (k;k<=gray_max;k++){
double dv = p[k]*(k-i)*(k-i);
vdiff -= dv;
vsum += dv;
}
if (vsum>0) L = -fabs(vdiff/vsum); else L = 0;
if (L4max < L || th4<0){
L4max = L;
th4 = i;
}
}
int32_t threshold;
switch (method){
case 1: //Otsu
threshold = th1;
break;
case 2: //Kittler and Illingworth
threshold = th2;
break;
case 3: //max entropy
threshold = th3;
break;
case 4: //potential difference
threshold = th4;
break;
default: //auto
{
int32_t nt = 0;
threshold = 0;
if (th1>=0) { threshold += th1; nt++;}
if (th2>=0) { threshold += th2; nt++;}
if (th3>=0) { threshold += th3; nt++;}
if (th4>=0) { threshold += th4; nt++;}
if (nt)
threshold /= nt;
else
threshold = (gray_min+gray_max)/2;
/*better(?) but really expensive alternative:
n = 0:255;
pth1 = c1(th1)/sqrt(2*pi*s1(th1))*exp(-((n - m1(th1)).^2)/2/s1(th1)) + c2(th1)/sqrt(2*pi*s2(th1))*exp(-((n - m2(th1)).^2)/2/s2(th1));
pth2 = c1(th2)/sqrt(2*pi*s1(th2))*exp(-((n - m1(th2)).^2)/2/s1(th2)) + c2(th2)/sqrt(2*pi*s2(th2))*exp(-((n - m2(th2)).^2)/2/s2(th2));
...
mse_th1 = sum((p-pth1).^2);
mse_th2 = sum((p-pth2).^2);
...
select th# that gives minimum mse_th#
*/
}
}
if (threshold <= gray_min || threshold >= gray_max)
threshold = (gray_min+gray_max)/2;
return threshold;
}
///////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W, using an optimal threshold mask
* \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
* \param nBoxSize: the image is divided into "nBoxSize x nBoxSize" blocks, from where the threshold is computed; min = 8; default = 64.
* \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
* \param nBias: global offset added to the threshold mask; default = 0.
* \param fGlobalLocalBalance: balance between local and global threshold. default = 0.5
* fGlobalLocalBalance can be from 0.0 (use only local threshold) to 1.0 (use only global threshold)
* the pContrastMask image must be grayscale with same with and height of the current image,
* \return true if everything is ok.
* \sa OptimalThreshold
*/
bool CxImage::AdaptiveThreshold(int32_t method, int32_t nBoxSize, CxImage* pContrastMask, int32_t nBias, float fGlobalLocalBalance)
{
if (!pDib)
return false;
if (pContrastMask){
if (!pContrastMask->IsValid() ||
!pContrastMask->IsGrayScale() ||
pContrastMask->GetWidth() != GetWidth() ||
pContrastMask->GetHeight() != GetHeight()){
strcpy(info.szLastError,"AdaptiveThreshold invalid ContrastMask");
return false;
}
}
if (nBoxSize<8) nBoxSize = 8;
if (fGlobalLocalBalance<0.0f) fGlobalLocalBalance = 0.0f;
if (fGlobalLocalBalance>1.0f) fGlobalLocalBalance = 1.0f;
int32_t mw = (head.biWidth + nBoxSize - 1)/nBoxSize;
int32_t mh = (head.biHeight + nBoxSize - 1)/nBoxSize;
CxImage mask(mw,mh,8);
if(!mask.GrayScale())
return false;
if(!GrayScale())
return false;
int32_t globalthreshold = OptimalThreshold(method, 0, pContrastMask);
if (globalthreshold <0)
return false;
for (int32_t y=0; y<mh; y++){
for (int32_t x=0; x<mw; x++){
info.nProgress = (int32_t)(100*(x+y*mw)/(mw*mh));
if (info.nEscape) break;
RECT r;
r.left = x*nBoxSize;
r.right = r.left + nBoxSize;
r.bottom = y*nBoxSize;
r.top = r.bottom + nBoxSize;
int32_t threshold = OptimalThreshold(method, &r, pContrastMask);
if (threshold <0) return false;
mask.SetPixelIndex(x,y,(uint8_t)max(0,min(255,nBias+((1.0f-fGlobalLocalBalance)*threshold + fGlobalLocalBalance*globalthreshold))));
}
}
mask.Resample(mw*nBoxSize,mh*nBoxSize,0);
mask.Crop(0,head.biHeight,head.biWidth,0);
if(!Threshold(&mask))
return false;
return true;
}
///////////////////////////////////////////////////////////////////////////////
/**
* Finds the contour of an object with a given color
* \param color_target: object color
* \param color_trace: contour color
* \return true if everything is ok.
* \sa Edge, Contour
*/
bool CxImage::Trace(RGBQUAD color_target, RGBQUAD color_trace)
{
if (!pDib) return false;
RGBQUAD color;
bool bFindStartPoint;
int32_t nFindPoint;
POINT StartPoint,CurrentPoint;
int32_t Direction[8][2]={{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}, {0,1},{1,1}};
int32_t BeginDirect = 0;
int32_t x,y;
CxImage tmp;
tmp.CopyInfo(*this);
tmp.Create(head.biWidth,head.biHeight,24,info.dwType);
if (!tmp.IsValid()){
strcpy(info.szLastError,tmp.GetLastError());
return false;
}
tmp.Clear(255);
CurrentPoint.x = StartPoint.x = CurrentPoint.y = StartPoint.y = 0;
bFindStartPoint = false;
for (y=head.biHeight-1;y>=0 && !bFindStartPoint;y--){
info.nProgress = (int32_t)(100*y/head.biHeight);
if (info.nEscape) break;
for (x=0;x<head.biWidth && !bFindStartPoint;x++){
color = BlindGetPixelColor(x,y);
if (color.rgbRed == color_target.rgbRed &&
color.rgbGreen == color_target.rgbGreen &&
color.rgbBlue == color_target.rgbBlue )
{
bFindStartPoint = true;
CurrentPoint.x = StartPoint.x = x;
CurrentPoint.y = StartPoint.y = y;
}
}
}
while(bFindStartPoint)
{
nFindPoint = 8;
while(nFindPoint)
{
x = CurrentPoint.x + Direction[BeginDirect][0];
y = CurrentPoint.y + Direction[BeginDirect][1];
color = GetPixelColor(x,y);
if (IsInside(x,y) &&
color.rgbRed == color_target.rgbRed &&
color.rgbGreen == color_target.rgbGreen &&
color.rgbBlue == color_target.rgbBlue )
{
nFindPoint = 0;
CurrentPoint.x = x;
CurrentPoint.y = y;
if(x == StartPoint.x && y == StartPoint.y)
bFindStartPoint = false;
tmp.BlindSetPixelColor(x,y,color_trace);
BeginDirect--;
if(BeginDirect == -1) BeginDirect = 7;
}
else
{
BeginDirect++;
if(BeginDirect == 8) BeginDirect = 0;
nFindPoint--;
if(nFindPoint == 0) {
bFindStartPoint = false;
tmp.SetPixelColor(CurrentPoint.x,CurrentPoint.y,color_trace);
}
}
}
}
Transfer(tmp);
return true;
}
#ifndef __MINGW32__
////////////////////////////////////////////////////////////////////////////////
#include <queue>
////////////////////////////////////////////////////////////////////////////////
/**
* Flood Fill
* \param xStart, yStart: starting point
* \param cFillColor: filling color
* \param nTolerance: deviation from the starting point color
* \param nOpacity: can be from 0 (transparent) to 255 (opaque, default)
* \param bSelectFilledArea: if true, the pixels in the region are also set in the selection layer; default = false
* \param nSelectionLevel: if bSelectFilledArea is true, the selected pixels are set to nSelectionLevel; default = 255
* Note: nOpacity=0 && bSelectFilledArea=true act as a "magic wand"
* \return true if everything is ok
*/
bool CxImage::FloodFill(const int32_t xStart, const int32_t yStart, const RGBQUAD cFillColor, const uint8_t nTolerance,
uint8_t nOpacity, const bool bSelectFilledArea, const uint8_t nSelectionLevel)
{
if (!pDib)
return false;
if (!IsInside(xStart,yStart))
return true;
#if CXIMAGE_SUPPORT_SELECTION
if (!SelectionIsInside(xStart,yStart))
return true;
#endif //CXIMAGE_SUPPORT_SELECTION
RGBQUAD* pPalette=NULL;
uint16_t bpp = GetBpp();
//nTolerance or nOpacity implemented only for grayscale or 24bpp images
if ((nTolerance || nOpacity != 255) && !(head.biBitCount == 24 || IsGrayScale())){
pPalette = new RGBQUAD[head.biClrUsed];
memcpy(pPalette, GetPalette(),GetPaletteSize());
if (!IncreaseBpp(24))
return false;
}
uint8_t* pFillMask = (uint8_t*)calloc(head.biWidth * head.biHeight,1);
if (!pFillMask)
return false;
//------------------------------------- Begin of Flood Fill
POINT offset[4] = {{-1,0},{0,-1},{1,0},{0,1}};
std::queue<POINT> q;
POINT point = {xStart,yStart};
q.push(point);
if (IsIndexed()){ //--- Generic indexed image, no tolerance OR Grayscale image with tolerance
uint8_t idxRef = GetPixelIndex(xStart,yStart);
uint8_t idxFill = GetNearestIndex(cFillColor);
uint8_t idxMin = (uint8_t)min(255, max(0,(int32_t)(idxRef - nTolerance)));
uint8_t idxMax = (uint8_t)min(255, max(0,(int32_t)(idxRef + nTolerance)));
while(!q.empty())
{
point = q.front();
q.pop();
for (int32_t z=0; z<4; z++){
int32_t x = point.x + offset[z].x;
int32_t y = point.y + offset[z].y;
if(IsInside(x,y)){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
uint8_t idx = BlindGetPixelIndex(x, y);
uint8_t* pFill = pFillMask + x + y * head.biWidth;
if (*pFill==0 && idxMin <= idx && idx <= idxMax )
{
if (nOpacity>0){
if (nOpacity == 255)
BlindSetPixelIndex(x, y, idxFill);
else
BlindSetPixelIndex(x, y, (uint8_t)((idxFill * nOpacity + idx * (255-nOpacity))>>8));
}
POINT pt = {x,y};
q.push(pt);
*pFill = 1;
}
}
}
}
}
} else { //--- RGB image
RGBQUAD cRef = GetPixelColor(xStart,yStart);
RGBQUAD cRefMin, cRefMax;
cRefMin.rgbRed = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbRed - nTolerance)));
cRefMin.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbGreen - nTolerance)));
cRefMin.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbBlue - nTolerance)));
cRefMax.rgbRed = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbRed + nTolerance)));
cRefMax.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbGreen + nTolerance)));
cRefMax.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbBlue + nTolerance)));
while(!q.empty())
{
point = q.front();
q.pop();
for (int32_t z=0; z<4; z++){
int32_t x = point.x + offset[z].x;
int32_t y = point.y + offset[z].y;
if(IsInside(x,y)){
#if CXIMAGE_SUPPORT_SELECTION
if (BlindSelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
RGBQUAD cc = BlindGetPixelColor(x, y);
uint8_t* pFill = pFillMask + x + y * head.biWidth;
if (*pFill==0 &&
cRefMin.rgbRed <= cc.rgbRed && cc.rgbRed <= cRefMax.rgbRed &&
cRefMin.rgbGreen <= cc.rgbGreen && cc.rgbGreen <= cRefMax.rgbGreen &&
cRefMin.rgbBlue <= cc.rgbBlue && cc.rgbBlue <= cRefMax.rgbBlue )
{
if (nOpacity>0){
if (nOpacity == 255)
BlindSetPixelColor(x, y, cFillColor);
else
{
cc.rgbRed = (uint8_t)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
cc.rgbGreen = (uint8_t)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
cc.rgbBlue = (uint8_t)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
BlindSetPixelColor(x, y, cc);
}
}
POINT pt = {x,y};
q.push(pt);
*pFill = 1;
}
}
}
}
}
}
if (pFillMask[xStart+yStart*head.biWidth] == 0 && nOpacity>0){
if (nOpacity == 255)
BlindSetPixelColor(xStart, yStart, cFillColor);
else
{
RGBQUAD cc = BlindGetPixelColor(xStart, yStart);
cc.rgbRed = (uint8_t)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
cc.rgbGreen = (uint8_t)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
cc.rgbBlue = (uint8_t)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
BlindSetPixelColor(xStart, yStart, cc);
}
}
pFillMask[xStart+yStart*head.biWidth] = 1;
//------------------------------------- End of Flood Fill
//if necessary, restore the original BPP and palette
if (pPalette){
DecreaseBpp(bpp, false, pPalette);
delete [] pPalette;
}
#if CXIMAGE_SUPPORT_SELECTION
if (bSelectFilledArea){
if (!SelectionIsValid()){
if (!SelectionCreate()){
return false;
}
SelectionClear();
info.rSelectionBox.right = head.biWidth;
info.rSelectionBox.top = head.biHeight;
info.rSelectionBox.left = info.rSelectionBox.bottom = 0;
}
RECT r;
SelectionGetBox(r);
for (int32_t y = r.bottom; y < r.top; y++){
uint8_t* pFill = pFillMask + r.left + y * head.biWidth;
for (int32_t x = r.left; x<r.right; x++){
if (*pFill) SelectionSet(x,y,nSelectionLevel);
pFill++;
}
}
SelectionRebuildBox();
}
#endif //CXIMAGE_SUPPORT_SELECTION
free(pFillMask);
return true;
}
#endif //__MINGW32__
////////////////////////////////////////////////////////////////////////////////
#endif //CXIMAGE_SUPPORT_DSP