aboutsummaryrefslogtreecommitdiff
path: root/smelt/sdl/CxImage/ximadsp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'smelt/sdl/CxImage/ximadsp.cpp')
-rw-r--r--smelt/sdl/CxImage/ximadsp.cpp3771
1 files changed, 0 insertions, 3771 deletions
diff --git a/smelt/sdl/CxImage/ximadsp.cpp b/smelt/sdl/CxImage/ximadsp.cpp
deleted file mode 100644
index df73136..0000000
--- a/smelt/sdl/CxImage/ximadsp.cpp
+++ /dev/null
@@ -1,3771 +0,0 @@
-// xImaDsp.cpp : DSP functions
-/* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it
- * CxImage version 7.0.0 31/Dec/2010
- */
-
-#include "ximage.h"
-
-#include "ximaiter.h"
-
-#if CXIMAGE_SUPPORT_DSP
-
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Converts the image to B&W.
- * The OptimalThreshold() function can be used for calculating the optimal threshold.
- * \param level: the lightness threshold.
- * \return true if everything is ok
- */
-bool CxImage::Threshold(uint8_t level)
-{
- if (!pDib) return false;
- if (head.biBitCount == 1) return true;
-
- GrayScale();
-
- CxImage tmp(head.biWidth,head.biHeight,1);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- for (int32_t y=0;y<head.biHeight;y++){
- info.nProgress = (int32_t)(100*y/head.biHeight);
- if (info.nEscape) break;
- for (int32_t x=0;x<head.biWidth;x++){
- if (BlindGetPixelIndex(x,y)>level)
- tmp.BlindSetPixelIndex(x,y,1);
- else
- tmp.BlindSetPixelIndex(x,y,0);
- }
- }
- tmp.SetPaletteColor(0,0,0,0);
- tmp.SetPaletteColor(1,255,255,255);
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Converts the image to B&W, using a threshold mask
- * \param pThresholdMask: the lightness threshold mask.
- * the pThresholdMask image must be grayscale with same with and height of the current image
- * \return true if everything is ok
- */
-bool CxImage::Threshold(CxImage* pThresholdMask)
-{
- if (!pDib) return false;
- if (head.biBitCount == 1) return true;
-
- if (!pThresholdMask) return false;
-
- if (!pThresholdMask->IsValid() ||
- !pThresholdMask->IsGrayScale() ||
- pThresholdMask->GetWidth() != GetWidth() ||
- pThresholdMask->GetHeight() != GetHeight()){
- strcpy(info.szLastError,"invalid ThresholdMask");
- return false;
- }
-
- GrayScale();
-
- CxImage tmp(head.biWidth,head.biHeight,1);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- for (int32_t y=0;y<head.biHeight;y++){
- info.nProgress = (int32_t)(100*y/head.biHeight);
- if (info.nEscape) break;
- for (int32_t x=0;x<head.biWidth;x++){
- if (BlindGetPixelIndex(x,y)>pThresholdMask->BlindGetPixelIndex(x,y))
- tmp.BlindSetPixelIndex(x,y,1);
- else
- tmp.BlindSetPixelIndex(x,y,0);
- }
- }
- tmp.SetPaletteColor(0,0,0,0);
- tmp.SetPaletteColor(1,255,255,255);
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Filters only the pixels with a lightness less (or more) than the threshold level,
- * and preserves the colors for the unfiltered pixels.
- * \param level = the lightness threshold.
- * \param bDirection = false: filter dark pixels, true: filter light pixels
- * \param nBkgndColor = filtered pixels are set to nBkgndColor color
- * \param bSetAlpha = if true, sets also the alpha component for the filtered pixels, with nBkgndColor.rgbReserved
- * \return true if everything is ok
- * \author [DP], [wangsongtao]
- */
-////////////////////////////////////////////////////////////////////////////////
-bool CxImage::Threshold2(uint8_t level, bool bDirection, RGBQUAD nBkgndColor, bool bSetAlpha)
-{
- if (!pDib) return false;
- if (head.biBitCount == 1) return true;
-
- CxImage tmp(*this, true, false, false);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- tmp.GrayScale();
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*y/head.biHeight);
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- uint8_t i = tmp.BlindGetPixelIndex(x,y);
- if (!bDirection && i<level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
- if (bDirection && i>=level) BlindSetPixelColor(x,y,nBkgndColor,bSetAlpha);
- }
- }
- }
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract RGB channels from the image. Each channel is an 8 bit grayscale image.
- * \param r,g,b: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b)
-{
- if (!pDib) return false;
- if (r==NULL && g==NULL && b==NULL) return false;
-
- CxImage tmpr(head.biWidth,head.biHeight,8);
- CxImage tmpg(head.biWidth,head.biHeight,8);
- CxImage tmpb(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t y=0; y<head.biHeight; y++){
- for(int32_t x=0; x<head.biWidth; x++){
- color = BlindGetPixelColor(x,y);
- if (r) tmpr.BlindSetPixelIndex(x,y,color.rgbRed);
- if (g) tmpg.BlindSetPixelIndex(x,y,color.rgbGreen);
- if (b) tmpb.BlindSetPixelIndex(x,y,color.rgbBlue);
- }
- }
-
- if (r) tmpr.SetGrayPalette();
- if (g) tmpg.SetGrayPalette();
- if (b) tmpb.SetGrayPalette();
-
- /*for(int32_t j=0; j<256; j++){
- uint8_t i=(uint8_t)j;
- if (r) tmpr.SetPaletteColor(i,i,0,0);
- if (g) tmpg.SetPaletteColor(i,0,i,0);
- if (b) tmpb.SetPaletteColor(i,0,0,i);
- }*/
-
- if (r) r->Transfer(tmpr);
- if (g) g->Transfer(tmpg);
- if (b) b->Transfer(tmpb);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract CMYK channels from the image. Each channel is an 8 bit grayscale image.
- * \param c,m,y,k: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k)
-{
- if (!pDib) return false;
- if (c==NULL && m==NULL && y==NULL && k==NULL) return false;
-
- CxImage tmpc(head.biWidth,head.biHeight,8);
- CxImage tmpm(head.biWidth,head.biHeight,8);
- CxImage tmpy(head.biWidth,head.biHeight,8);
- CxImage tmpk(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t yy=0; yy<head.biHeight; yy++){
- for(int32_t xx=0; xx<head.biWidth; xx++){
- color = BlindGetPixelColor(xx,yy);
- if (c) tmpc.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbRed));
- if (m) tmpm.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbGreen));
- if (y) tmpy.BlindSetPixelIndex(xx,yy,(uint8_t)(255-color.rgbBlue));
- if (k) tmpk.BlindSetPixelIndex(xx,yy,(uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue));
- }
- }
-
- if (c) tmpc.SetGrayPalette();
- if (m) tmpm.SetGrayPalette();
- if (y) tmpy.SetGrayPalette();
- if (k) tmpk.SetGrayPalette();
-
- if (c) c->Transfer(tmpc);
- if (m) m->Transfer(tmpm);
- if (y) y->Transfer(tmpy);
- if (k) k->Transfer(tmpk);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract YUV channels from the image. Each channel is an 8 bit grayscale image.
- * \param y,u,v: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v)
-{
- if (!pDib) return false;
- if (y==NULL && u==NULL && v==NULL) return false;
-
- CxImage tmpy(head.biWidth,head.biHeight,8);
- CxImage tmpu(head.biWidth,head.biHeight,8);
- CxImage tmpv(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t yy=0; yy<head.biHeight; yy++){
- for(int32_t x=0; x<head.biWidth; x++){
- color = RGBtoYUV(BlindGetPixelColor(x,yy));
- if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
- if (u) tmpu.BlindSetPixelIndex(x,yy,color.rgbGreen);
- if (v) tmpv.BlindSetPixelIndex(x,yy,color.rgbBlue);
- }
- }
-
- if (y) tmpy.SetGrayPalette();
- if (u) tmpu.SetGrayPalette();
- if (v) tmpv.SetGrayPalette();
-
- if (y) y->Transfer(tmpy);
- if (u) u->Transfer(tmpu);
- if (v) v->Transfer(tmpv);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract YIQ channels from the image. Each channel is an 8 bit grayscale image.
- * \param y,i,q: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q)
-{
- if (!pDib) return false;
- if (y==NULL && i==NULL && q==NULL) return false;
-
- CxImage tmpy(head.biWidth,head.biHeight,8);
- CxImage tmpi(head.biWidth,head.biHeight,8);
- CxImage tmpq(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t yy=0; yy<head.biHeight; yy++){
- for(int32_t x=0; x<head.biWidth; x++){
- color = RGBtoYIQ(BlindGetPixelColor(x,yy));
- if (y) tmpy.BlindSetPixelIndex(x,yy,color.rgbRed);
- if (i) tmpi.BlindSetPixelIndex(x,yy,color.rgbGreen);
- if (q) tmpq.BlindSetPixelIndex(x,yy,color.rgbBlue);
- }
- }
-
- if (y) tmpy.SetGrayPalette();
- if (i) tmpi.SetGrayPalette();
- if (q) tmpq.SetGrayPalette();
-
- if (y) y->Transfer(tmpy);
- if (i) i->Transfer(tmpi);
- if (q) q->Transfer(tmpq);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract XYZ channels from the image. Each channel is an 8 bit grayscale image.
- * \param x,y,z: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z)
-{
- if (!pDib) return false;
- if (x==NULL && y==NULL && z==NULL) return false;
-
- CxImage tmpx(head.biWidth,head.biHeight,8);
- CxImage tmpy(head.biWidth,head.biHeight,8);
- CxImage tmpz(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t yy=0; yy<head.biHeight; yy++){
- for(int32_t xx=0; xx<head.biWidth; xx++){
- color = RGBtoXYZ(BlindGetPixelColor(xx,yy));
- if (x) tmpx.BlindSetPixelIndex(xx,yy,color.rgbRed);
- if (y) tmpy.BlindSetPixelIndex(xx,yy,color.rgbGreen);
- if (z) tmpz.BlindSetPixelIndex(xx,yy,color.rgbBlue);
- }
- }
-
- if (x) tmpx.SetGrayPalette();
- if (y) tmpy.SetGrayPalette();
- if (z) tmpz.SetGrayPalette();
-
- if (x) x->Transfer(tmpx);
- if (y) y->Transfer(tmpy);
- if (z) z->Transfer(tmpz);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Extract HSL channels from the image. Each channel is an 8 bit grayscale image.
- * \param h,s,l: pointers to CxImage objects, to store the splited channels
- * \return true if everything is ok
- */
-bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l)
-{
- if (!pDib) return false;
- if (h==NULL && s==NULL && l==NULL) return false;
-
- CxImage tmph(head.biWidth,head.biHeight,8);
- CxImage tmps(head.biWidth,head.biHeight,8);
- CxImage tmpl(head.biWidth,head.biHeight,8);
-
- RGBQUAD color;
- for(int32_t y=0; y<head.biHeight; y++){
- for(int32_t x=0; x<head.biWidth; x++){
- color = RGBtoHSL(BlindGetPixelColor(x,y));
- if (h) tmph.BlindSetPixelIndex(x,y,color.rgbRed);
- if (s) tmps.BlindSetPixelIndex(x,y,color.rgbGreen);
- if (l) tmpl.BlindSetPixelIndex(x,y,color.rgbBlue);
- }
- }
-
- if (h) tmph.SetGrayPalette();
- if (s) tmps.SetGrayPalette();
- if (l) tmpl.SetGrayPalette();
-
- /* pseudo-color generator for hue channel (visual debug)
- if (h) for(int32_t j=0; j<256; j++){
- uint8_t i=(uint8_t)j;
- RGBQUAD hsl={120,240,i,0};
- tmph.SetPaletteColor(i,HSLtoRGB(hsl));
- }*/
-
- if (h) h->Transfer(tmph);
- if (s) s->Transfer(tmps);
- if (l) l->Transfer(tmpl);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-#define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */
-#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
- /* HSLMAX BEST IF DIVISIBLE BY 6 */
- /* RGBMAX, HSLMAX must each fit in a uint8_t. */
-/* Hue is undefined if Saturation is 0 (grey-scale) */
-/* This value determines where the Hue scrollbar is */
-/* initially set for achromatic colors */
-#define HSLUNDEFINED (HSLMAX*2/3)
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor)
-{
- uint8_t R,G,B; /* input RGB values */
- uint8_t H,L,S; /* output HSL values */
- uint8_t cMax,cMin; /* max and min RGB values */
- uint16_t Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/
-
- R = lRGBColor.rgbRed; /* get R, G, and B out of uint32_t */
- G = lRGBColor.rgbGreen;
- B = lRGBColor.rgbBlue;
-
- cMax = max( max(R,G), B); /* calculate lightness */
- cMin = min( min(R,G), B);
- L = (uint8_t)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX));
-
- if (cMax==cMin){ /* r=g=b --> achromatic case */
- S = 0; /* saturation */
- H = HSLUNDEFINED; /* hue */
- } else { /* chromatic case */
- if (L <= (HSLMAX/2)) /* saturation */
- S = (uint8_t)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin));
- else
- S = (uint8_t)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin));
- /* hue */
- Rdelta = (uint16_t)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
- Gdelta = (uint16_t)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
- Bdelta = (uint16_t)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
-
- if (R == cMax)
- H = (uint8_t)(Bdelta - Gdelta);
- else if (G == cMax)
- H = (uint8_t)((HSLMAX/3) + Rdelta - Bdelta);
- else /* B == cMax */
- H = (uint8_t)(((2*HSLMAX)/3) + Gdelta - Rdelta);
-
-// if (H < 0) H += HSLMAX; //always false
- if (H > HSLMAX) H -= HSLMAX;
- }
- RGBQUAD hsl={L,S,H,0};
- return hsl;
-}
-////////////////////////////////////////////////////////////////////////////////
-float CxImage::HueToRGB(float n1,float n2, float hue)
-{
- //<F. Livraghi> fixed implementation for HSL2RGB routine
- float rValue;
-
- if (hue > 360)
- hue = hue - 360;
- else if (hue < 0)
- hue = hue + 360;
-
- if (hue < 60)
- rValue = n1 + (n2-n1)*hue/60.0f;
- else if (hue < 180)
- rValue = n2;
- else if (hue < 240)
- rValue = n1+(n2-n1)*(240-hue)/60;
- else
- rValue = n1;
-
- return rValue;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor)
-{
- return HSLtoRGB(RGBtoRGBQUAD(cHSLColor));
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor)
-{
- //<F. Livraghi> fixed implementation for HSL2RGB routine
- float h,s,l;
- float m1,m2;
- uint8_t r,g,b;
-
- h = (float)lHSLColor.rgbRed * 360.0f/255.0f;
- s = (float)lHSLColor.rgbGreen/255.0f;
- l = (float)lHSLColor.rgbBlue/255.0f;
-
- if (l <= 0.5) m2 = l * (1+s);
- else m2 = l + s - l*s;
-
- m1 = 2 * l - m2;
-
- if (s == 0) {
- r=g=b=(uint8_t)(l*255.0f);
- } else {
- r = (uint8_t)(HueToRGB(m1,m2,h+120) * 255.0f);
- g = (uint8_t)(HueToRGB(m1,m2,h) * 255.0f);
- b = (uint8_t)(HueToRGB(m1,m2,h-120) * 255.0f);
- }
-
- RGBQUAD rgb = {b,g,r,0};
- return rgb;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor)
-{
- int32_t U,V,R,G,B;
- float Y = lYUVColor.rgbRed;
- U = lYUVColor.rgbGreen - 128;
- V = lYUVColor.rgbBlue - 128;
-
-// R = (int32_t)(1.164 * Y + 2.018 * U);
-// G = (int32_t)(1.164 * Y - 0.813 * V - 0.391 * U);
-// B = (int32_t)(1.164 * Y + 1.596 * V);
- R = (int32_t)( Y + 1.403f * V);
- G = (int32_t)( Y - 0.344f * U - 0.714f * V);
- B = (int32_t)( Y + 1.770f * U);
-
- R= min(255,max(0,R));
- G= min(255,max(0,G));
- B= min(255,max(0,B));
- RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
- return rgb;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor)
-{
- int32_t Y,U,V,R,G,B;
- R = lRGBColor.rgbRed;
- G = lRGBColor.rgbGreen;
- B = lRGBColor.rgbBlue;
-
-// Y = (int32_t)( 0.257 * R + 0.504 * G + 0.098 * B);
-// U = (int32_t)( 0.439 * R - 0.368 * G - 0.071 * B + 128);
-// V = (int32_t)(-0.148 * R - 0.291 * G + 0.439 * B + 128);
- Y = (int32_t)(0.299f * R + 0.587f * G + 0.114f * B);
- U = (int32_t)((B-Y) * 0.565f + 128);
- V = (int32_t)((R-Y) * 0.713f + 128);
-
- Y= min(255,max(0,Y));
- U= min(255,max(0,U));
- V= min(255,max(0,V));
- RGBQUAD yuv={(uint8_t)V,(uint8_t)U,(uint8_t)Y,0};
- return yuv;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor)
-{
- int32_t I,Q,R,G,B;
- float Y = lYIQColor.rgbRed;
- I = lYIQColor.rgbGreen - 128;
- Q = lYIQColor.rgbBlue - 128;
-
- R = (int32_t)( Y + 0.956f * I + 0.621f * Q);
- G = (int32_t)( Y - 0.273f * I - 0.647f * Q);
- B = (int32_t)( Y - 1.104f * I + 1.701f * Q);
-
- R= min(255,max(0,R));
- G= min(255,max(0,G));
- B= min(255,max(0,B));
- RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
- return rgb;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor)
-{
- int32_t Y,I,Q,R,G,B;
- R = lRGBColor.rgbRed;
- G = lRGBColor.rgbGreen;
- B = lRGBColor.rgbBlue;
-
- Y = (int32_t)( 0.2992f * R + 0.5868f * G + 0.1140f * B);
- I = (int32_t)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128);
- Q = (int32_t)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128);
-
- Y= min(255,max(0,Y));
- I= min(255,max(0,I));
- Q= min(255,max(0,Q));
- RGBQUAD yiq={(uint8_t)Q,(uint8_t)I,(uint8_t)Y,0};
- return yiq;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor)
-{
- int32_t X,Y,Z,R,G,B;
- X = lXYZColor.rgbRed;
- Y = lXYZColor.rgbGreen;
- Z = lXYZColor.rgbBlue;
- double k=1.088751;
-
- R = (int32_t)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k);
- G = (int32_t)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k);
- B = (int32_t)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k);
-
- R= min(255,max(0,R));
- G= min(255,max(0,G));
- B= min(255,max(0,B));
- RGBQUAD rgb={(uint8_t)B,(uint8_t)G,(uint8_t)R,0};
- return rgb;
-}
-////////////////////////////////////////////////////////////////////////////////
-RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor)
-{
- int32_t X,Y,Z,R,G,B;
- R = lRGBColor.rgbRed;
- G = lRGBColor.rgbGreen;
- B = lRGBColor.rgbBlue;
-
- X = (int32_t)( 0.412453f * R + 0.357580f * G + 0.180423f * B);
- Y = (int32_t)( 0.212671f * R + 0.715160f * G + 0.072169f * B);
- Z = (int32_t)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f);
-
- //X= min(255,max(0,X));
- //Y= min(255,max(0,Y));
- //Z= min(255,max(0,Z));
- RGBQUAD xyz={(uint8_t)Z,(uint8_t)Y,(uint8_t)X,0};
- return xyz;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Generates a "rainbow" palette with saturated colors
- * \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications.
- */
-void CxImage::HuePalette(float correction)
-{
- if (head.biClrUsed==0) return;
-
- for(uint32_t j=0; j<head.biClrUsed; j++){
- uint8_t i=(uint8_t)(j*correction*(255/(head.biClrUsed-1)));
- RGBQUAD hsl={120,240,i,0};
- SetPaletteColor((uint8_t)j,HSLtoRGB(hsl));
- }
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Replaces the original hue and saturation values.
- * \param hue: hue
- * \param sat: saturation
- * \param blend: can be from 0 (no effect) to 1 (full effect)
- * \return true if everything is ok
- */
-bool CxImage::Colorize(uint8_t hue, uint8_t sat, float blend)
-{
- if (!pDib) return false;
-
- if (blend < 0.0f) blend = 0.0f;
- if (blend > 1.0f) blend = 1.0f;
- int32_t a0 = (int32_t)(256*blend);
- int32_t a1 = 256 - a0;
-
- bool bFullBlend = false;
- if (blend > 0.999f) bFullBlend = true;
-
- RGBQUAD color,hsl;
- if (head.biClrUsed==0){
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- if (bFullBlend){
- color = RGBtoHSL(BlindGetPixelColor(x,y));
- color.rgbRed=hue;
- color.rgbGreen=sat;
- BlindSetPixelColor(x,y,HSLtoRGB(color));
- } else {
- color = BlindGetPixelColor(x,y);
- hsl.rgbRed=hue;
- hsl.rgbGreen=sat;
- hsl.rgbBlue = (uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
- hsl = HSLtoRGB(hsl);
- //BlendPixelColor(x,y,hsl,blend);
- //color.rgbRed = (uint8_t)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
- //color.rgbBlue = (uint8_t)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
- //color.rgbGreen = (uint8_t)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
- color.rgbRed = (uint8_t)((hsl.rgbRed * a0 + color.rgbRed * a1)>>8);
- color.rgbBlue = (uint8_t)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8);
- color.rgbGreen = (uint8_t)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8);
- BlindSetPixelColor(x,y,color);
- }
- }
- }
- }
- } else {
- for(uint32_t j=0; j<head.biClrUsed; j++){
- if (bFullBlend){
- color = RGBtoHSL(GetPaletteColor((uint8_t)j));
- color.rgbRed=hue;
- color.rgbGreen=sat;
- SetPaletteColor((uint8_t)j,HSLtoRGB(color));
- } else {
- color = GetPaletteColor((uint8_t)j);
- hsl.rgbRed=hue;
- hsl.rgbGreen=sat;
- hsl.rgbBlue = (uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue);
- hsl = HSLtoRGB(hsl);
- color.rgbRed = (uint8_t)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
- color.rgbBlue = (uint8_t)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
- color.rgbGreen = (uint8_t)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
- SetPaletteColor((uint8_t)j,color);
- }
- }
- }
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Changes the brightness and the contrast of the image.
- * \param brightness: can be from -255 to 255, if brightness is negative, the image becomes dark.
- * \param contrast: can be from -100 to 100, the neutral value is 0.
- * \return true if everything is ok
- */
-bool CxImage::Light(int32_t brightness, int32_t contrast)
-{
- if (!pDib) return false;
- float c=(100 + contrast)/100.0f;
- brightness+=128;
-
- uint8_t cTable[256]; //<nipper>
- for (int32_t i=0;i<256;i++) {
- cTable[i] = (uint8_t)max(0,min(255,(int32_t)((i-128)*c + brightness + 0.5f)));
- }
-
- return Lut(cTable);
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * \return mean lightness of the image. Useful with Threshold() and Light()
- */
-float CxImage::Mean()
-{
- if (!pDib) return 0;
-
- CxImage tmp(*this,true);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- tmp.GrayScale();
- float sum=0;
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
- if (xmin==xmax || ymin==ymax) return (float)0.0;
-
- uint8_t *iSrc=tmp.info.pImage;
- iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections <Admir Hodzic>
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
- for(int32_t x=xmin; x<xmax; x++){
- sum+=iSrc[x];
- }
- iSrc+=tmp.info.dwEffWidth;
- }
- return sum/(xmax-xmin)/(ymax-ymin);
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * 2D linear filter
- * \param kernel: convolving matrix, in row format.
- * \param Ksize: size of the kernel.
- * \param Kfactor: normalization constant.
- * \param Koffset: bias.
- * \verbatim Example: the "soften" filter uses this kernel:
- 1 1 1
- 1 8 1
- 1 1 1
- the function needs: kernel={1,1,1,1,8,1,1,1,1}; Ksize=3; Kfactor=16; Koffset=0; \endverbatim
- * \return true if everything is ok
- */
-bool CxImage::Filter(int32_t* kernel, int32_t Ksize, int32_t Kfactor, int32_t Koffset)
-{
- if (!pDib) return false;
-
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- int32_t r,g,b,i;
- int32_t ksumcur,ksumtot;
- RGBQUAD c;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- ksumtot = 0;
- for(int32_t j=-k2;j<kmax;j++){
- for(int32_t k=-k2;k<kmax;k++){
- ksumtot += kernel[(j+k2)+Ksize*(k+k2)];
- }
- }
-
- if ((head.biBitCount==8) && IsGrayScale())
- {
- uint8_t* cPtr;
- uint8_t* cPtr2;
- int32_t iCount;
- int32_t iY, iY2, iY1;
- cPtr = info.pImage;
- cPtr2 = (uint8_t *)tmp.info.pImage;
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- iY1 = y*info.dwEffWidth+xmin;
- for(int32_t x=xmin; x<xmax; x++, iY1++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- b=ksumcur=0;
- iCount = 0;
- iY2 = ((y-k2)*info.dwEffWidth);
- for(int32_t j=-k2;j<kmax;j++, iY2+=info.dwEffWidth)
- {
- if (0>(y+j) || (y+j)>=head.biHeight) continue;
- iY = iY2+x;
- for(int32_t k=-k2;k<kmax;k++, iCount++)
- {
- if (0>(x+k) || (x+k)>=head.biWidth) continue;
- i=kernel[iCount];
- b += cPtr[iY+k] * i;
- ksumcur += i;
- }
- }
- if (Kfactor==0 || ksumcur==0){
- cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)(b + Koffset)));
- } else if (ksumtot == ksumcur) {
- cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)(b/Kfactor + Koffset)));
- } else {
- cPtr2[iY1] = (uint8_t)min(255, max(0,(int32_t)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
- }
- }
- }
- }
- }
- else
- {
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
- #if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
- #endif //CXIMAGE_SUPPORT_SELECTION
- {
- r=b=g=ksumcur=0;
- for(int32_t j=-k2;j<kmax;j++){
- for(int32_t k=-k2;k<kmax;k++){
- if (!IsInside(x+j,y+k)) continue;
- c = BlindGetPixelColor(x+j,y+k);
- i = kernel[(j+k2)+Ksize*(k+k2)];
- r += c.rgbRed * i;
- g += c.rgbGreen * i;
- b += c.rgbBlue * i;
- ksumcur += i;
- }
- }
- if (Kfactor==0 || ksumcur==0){
- c.rgbRed = (uint8_t)min(255, max(0,(int32_t)(r + Koffset)));
- c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(g + Koffset)));
- c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(b + Koffset)));
- } else if (ksumtot == ksumcur) {
- c.rgbRed = (uint8_t)min(255, max(0,(int32_t)(r/Kfactor + Koffset)));
- c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(g/Kfactor + Koffset)));
- c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(b/Kfactor + Koffset)));
- } else {
- c.rgbRed = (uint8_t)min(255, max(0,(int32_t)((r*ksumtot)/(ksumcur*Kfactor) + Koffset)));
- c.rgbGreen = (uint8_t)min(255, max(0,(int32_t)((g*ksumtot)/(ksumcur*Kfactor) + Koffset)));
- c.rgbBlue = (uint8_t)min(255, max(0,(int32_t)((b*ksumtot)/(ksumcur*Kfactor) + Koffset)));
- }
- tmp.BlindSetPixelColor(x,y,c);
- }
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Enhance the dark areas of the image
- * \param Ksize: size of the kernel.
- * \return true if everything is ok
- */
-bool CxImage::Erode(int32_t Ksize)
-{
- if (!pDib) return false;
-
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- uint8_t r,g,b;
- RGBQUAD c;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- r=b=g=255;
- for(int32_t j=-k2;j<kmax;j++){
- for(int32_t k=-k2;k<kmax;k++){
- if (!IsInside(x+j,y+k)) continue;
- c = BlindGetPixelColor(x+j,y+k);
- if (c.rgbRed < r) r=c.rgbRed;
- if (c.rgbGreen < g) g=c.rgbGreen;
- if (c.rgbBlue < b) b=c.rgbBlue;
- }
- }
- c.rgbRed = r;
- c.rgbGreen = g;
- c.rgbBlue = b;
- tmp.BlindSetPixelColor(x,y,c);
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Enhance the light areas of the image
- * \param Ksize: size of the kernel.
- * \return true if everything is ok
- */
-bool CxImage::Dilate(int32_t Ksize)
-{
- if (!pDib) return false;
-
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- uint8_t r,g,b;
- RGBQUAD c;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- r=b=g=0;
- for(int32_t j=-k2;j<kmax;j++){
- for(int32_t k=-k2;k<kmax;k++){
- if (!IsInside(x+j,y+k)) continue;
- c = BlindGetPixelColor(x+j,y+k);
- if (c.rgbRed > r) r=c.rgbRed;
- if (c.rgbGreen > g) g=c.rgbGreen;
- if (c.rgbBlue > b) b=c.rgbBlue;
- }
- }
- c.rgbRed = r;
- c.rgbGreen = g;
- c.rgbBlue = b;
- tmp.BlindSetPixelColor(x,y,c);
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Enhance the variations between adjacent pixels.
- * Similar results can be achieved using Filter(),
- * but the algorithms are different both in Edge() and in Contour().
- * \param Ksize: size of the kernel.
- * \return true if everything is ok
- */
-bool CxImage::Edge(int32_t Ksize)
-{
- if (!pDib) return false;
-
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- uint8_t r,g,b,rr,gg,bb;
- RGBQUAD c;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- r=b=g=0;
- rr=bb=gg=255;
- for(int32_t j=-k2;j<kmax;j++){
- for(int32_t k=-k2;k<kmax;k++){
- if (!IsInside(x+j,y+k)) continue;
- c = BlindGetPixelColor(x+j,y+k);
- if (c.rgbRed > r) r=c.rgbRed;
- if (c.rgbGreen > g) g=c.rgbGreen;
- if (c.rgbBlue > b) b=c.rgbBlue;
-
- if (c.rgbRed < rr) rr=c.rgbRed;
- if (c.rgbGreen < gg) gg=c.rgbGreen;
- if (c.rgbBlue < bb) bb=c.rgbBlue;
- }
- }
- c.rgbRed = (uint8_t)(255-abs(r-rr));
- c.rgbGreen = (uint8_t)(255-abs(g-gg));
- c.rgbBlue = (uint8_t)(255-abs(b-bb));
- tmp.BlindSetPixelColor(x,y,c);
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Blends two images
- * \param imgsrc2: image to be mixed with this
- * \param op: blending method; see ImageOpType
- * \param lXOffset, lYOffset: image displacement
- * \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image.
- * \return true if everything is ok
- * \author [Mwolski],[brunom]
- */
-void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, int32_t lXOffset, int32_t lYOffset, bool bMixAlpha)
-{
- int32_t lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset);
- int32_t lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset);
-
- bool bEditAlpha = false;
-
-#if CXIMAGE_SUPPORT_ALPHA
- bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha;
- if (bEditAlpha && AlphaIsValid()==false){
- AlphaCreate();
- }
-#endif //CXIMAGE_SUPPORT_ALPHA
-
- RGBQUAD rgbBackgrnd1 = GetTransColor();
- RGBQUAD rgb1, rgb2, rgbDest;
-
- for(int32_t lY=0;lY<lHeight;lY++)
- {
- info.nProgress = (int32_t)(100*lY/head.biHeight);
- if (info.nEscape) break;
-
- for(int32_t lX=0;lX<lWide;lX++)
- {
-#if CXIMAGE_SUPPORT_SELECTION
- if (SelectionIsInside(lX,lY) && imgsrc2.SelectionIsInside(lX+lXOffset,lY+lYOffset))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- rgb1 = GetPixelColor(lX,lY);
- rgb2 = imgsrc2.GetPixelColor(lX+lXOffset,lY+lYOffset);
- switch(op)
- {
- case OpAvg:
- rgbDest.rgbBlue = (uint8_t)((rgb1.rgbBlue+rgb2.rgbBlue)/2);
- rgbDest.rgbGreen = (uint8_t)((rgb1.rgbGreen+rgb2.rgbGreen)/2);
- rgbDest.rgbRed = (uint8_t)((rgb1.rgbRed+rgb2.rgbRed)/2);
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)((rgb1.rgbReserved+rgb2.rgbReserved)/2);
- break;
- case OpAdd:
- rgbDest.rgbBlue = (uint8_t)max(0,min(255,rgb1.rgbBlue+rgb2.rgbBlue));
- rgbDest.rgbGreen = (uint8_t)max(0,min(255,rgb1.rgbGreen+rgb2.rgbGreen));
- rgbDest.rgbRed = (uint8_t)max(0,min(255,rgb1.rgbRed+rgb2.rgbRed));
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)max(0,min(255,rgb1.rgbReserved+rgb2.rgbReserved));
- break;
- case OpSub:
- rgbDest.rgbBlue = (uint8_t)max(0,min(255,rgb1.rgbBlue-rgb2.rgbBlue));
- rgbDest.rgbGreen = (uint8_t)max(0,min(255,rgb1.rgbGreen-rgb2.rgbGreen));
- rgbDest.rgbRed = (uint8_t)max(0,min(255,rgb1.rgbRed-rgb2.rgbRed));
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)max(0,min(255,rgb1.rgbReserved-rgb2.rgbReserved));
- break;
- case OpAnd:
- rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue&rgb2.rgbBlue);
- rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen&rgb2.rgbGreen);
- rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed&rgb2.rgbRed);
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved&rgb2.rgbReserved);
- break;
- case OpXor:
- rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue^rgb2.rgbBlue);
- rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen^rgb2.rgbGreen);
- rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed^rgb2.rgbRed);
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved^rgb2.rgbReserved);
- break;
- case OpOr:
- rgbDest.rgbBlue = (uint8_t)(rgb1.rgbBlue|rgb2.rgbBlue);
- rgbDest.rgbGreen = (uint8_t)(rgb1.rgbGreen|rgb2.rgbGreen);
- rgbDest.rgbRed = (uint8_t)(rgb1.rgbRed|rgb2.rgbRed);
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)(rgb1.rgbReserved|rgb2.rgbReserved);
- break;
- case OpMask:
- if(rgb2.rgbBlue==0 && rgb2.rgbGreen==0 && rgb2.rgbRed==0)
- rgbDest = rgbBackgrnd1;
- else
- rgbDest = rgb1;
- break;
- case OpSrcCopy:
- if(IsTransparent(lX,lY))
- rgbDest = rgb2;
- else // copy straight over
- rgbDest = rgb1;
- break;
- case OpDstCopy:
- if(imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset))
- rgbDest = rgb1;
- else // copy straight over
- rgbDest = rgb2;
- break;
- case OpScreen:
- {
- uint8_t a,a1;
-
- if (imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset)){
- a=0;
-#if CXIMAGE_SUPPORT_ALPHA
- } else if (imgsrc2.AlphaIsValid()){
- a=imgsrc2.AlphaGet(lX+lXOffset,lY+lYOffset);
- a =(uint8_t)((a*imgsrc2.info.nAlphaMax)/255);
-#endif //CXIMAGE_SUPPORT_ALPHA
- } else {
- a=255;
- }
-
- if (a==0){ //transparent
- rgbDest = rgb1;
- } else if (a==255){ //opaque
- rgbDest = rgb2;
- } else { //blend
- a1 = (uint8_t)~a;
- rgbDest.rgbBlue = (uint8_t)((rgb1.rgbBlue*a1+rgb2.rgbBlue*a)/255);
- rgbDest.rgbGreen = (uint8_t)((rgb1.rgbGreen*a1+rgb2.rgbGreen*a)/255);
- rgbDest.rgbRed = (uint8_t)((rgb1.rgbRed*a1+rgb2.rgbRed*a)/255);
- }
-
- if (bEditAlpha) rgbDest.rgbReserved = (uint8_t)((rgb1.rgbReserved*a)/255);
- }
- break;
- case OpSrcBlend:
- if(IsTransparent(lX,lY))
- rgbDest = rgb2;
- else
- {
- int32_t lBDiff = abs(rgb1.rgbBlue - rgbBackgrnd1.rgbBlue);
- int32_t lGDiff = abs(rgb1.rgbGreen - rgbBackgrnd1.rgbGreen);
- int32_t lRDiff = abs(rgb1.rgbRed - rgbBackgrnd1.rgbRed);
-
- double lAverage = (lBDiff+lGDiff+lRDiff)/3;
- double lThresh = 16;
- double dLarge = lAverage/lThresh;
- double dSmall = (lThresh-lAverage)/lThresh;
- double dSmallAmt = dSmall*((double)rgb2.rgbBlue);
-
- if( lAverage < lThresh+1){
- rgbDest.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbBlue) +
- dSmallAmt)));
- rgbDest.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbGreen) +
- dSmallAmt)));
- rgbDest.rgbRed = (uint8_t)max(0,min(255,(int32_t)(dLarge*((double)rgb1.rgbRed) +
- dSmallAmt)));
- }
- else
- rgbDest = rgb1;
- }
- break;
- case OpBlendAlpha: //[brunom]
- if(rgb2.rgbReserved != 0)
- {
- // The lower value is almost transparent, or the overlying
- // almost transparent can not directly overlying the value taken
- if( (rgb1.rgbReserved < 5) || (rgb2.rgbReserved > 250) ){
- rgbDest = rgb2;
- } else {
- // Alpha Blending with associative calculation merge
- // (http://en.wikipedia.org/wiki/Alpha_compositing)
- int32_t a0,a1,a2;
- // Transparency of the superimposed image
- a2 = rgb2.rgbReserved;
- // Calculation transparency of the underlying image
- a1 = (rgb1.rgbReserved * (255 - a2)) >> 8;
- // total transparency of the new pixel
- a0 = a2 + a1;
- // New transparency assume (a0 == 0 is the restriction s.o. (range 5-250) intercepted)
- if (bEditAlpha) rgbDest.rgbReserved = a0;
- // each color channel to calculate
- rgbDest.rgbBlue = (BYTE)((rgb2.rgbBlue * a2 + a1 * rgb1.rgbBlue )/a0);
- rgbDest.rgbGreen = (BYTE)((rgb2.rgbGreen * a2 + a1 * rgb1.rgbGreen)/a0);
- rgbDest.rgbRed = (BYTE)((rgb2.rgbRed * a2 + a1 * rgb1.rgbRed )/a0);
- }
- } else {
- rgbDest = rgb1;
- rgbDest.rgbReserved = 0;
- }
- break;
- default:
- return;
- }
- SetPixelColor(lX,lY,rgbDest,bEditAlpha);
- }
- }
- }
-}
-////////////////////////////////////////////////////////////////////////////////
-// thanks to Kenneth Ballard
-void CxImage::MixFrom(CxImage & imagesrc2, int32_t lXOffset, int32_t lYOffset)
-{
- int32_t width = imagesrc2.GetWidth();
- int32_t height = imagesrc2.GetHeight();
-
- int32_t x, y;
-
- if (imagesrc2.IsTransparent()) {
- for(x = 0; x < width; x++) {
- for(y = 0; y < height; y++) {
- if(!imagesrc2.IsTransparent(x,y)){
- SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
- }
- }
- }
- } else { //no transparency so just set it <Matt>
- for(x = 0; x < width; x++) {
- for(y = 0; y < height; y++) {
- SetPixelColor(x + lXOffset, y + lYOffset, imagesrc2.BlindGetPixelColor(x, y));
- }
- }
- }
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Adjusts separately the red, green, and blue values in the image.
- * \param r, g, b: can be from -255 to +255.
- * \return true if everything is ok
- */
-bool CxImage::ShiftRGB(int32_t r, int32_t g, int32_t b)
-{
- if (!pDib) return false;
- RGBQUAD color;
- if (head.biClrUsed==0){
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- color = BlindGetPixelColor(x,y);
- color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + r)));
- color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + g)));
- color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + b)));
- BlindSetPixelColor(x,y,color);
- }
- }
- }
- } else {
- for(uint32_t j=0; j<head.biClrUsed; j++){
- color = GetPaletteColor((uint8_t)j);
- color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + r)));
- color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + g)));
- color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + b)));
- SetPaletteColor((uint8_t)j,color);
- }
- }
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Adjusts the color balance of the image
- * \param gamma can be from 0.1 to 5.
- * \return true if everything is ok
- * \sa GammaRGB
- */
-bool CxImage::Gamma(float gamma)
-{
- if (!pDib) return false;
-
- if (gamma <= 0.0f) return false;
-
- double dinvgamma = 1/gamma;
- double dMax = pow(255.0, dinvgamma) / 255.0;
-
- uint8_t cTable[256]; //<nipper>
- for (int32_t i=0;i<256;i++) {
- cTable[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
- }
-
- return Lut(cTable);
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Adjusts the color balance indipendent for each color channel
- * \param gammaR, gammaG, gammaB can be from 0.1 to 5.
- * \return true if everything is ok
- * \sa Gamma
- */
-bool CxImage::GammaRGB(float gammaR, float gammaG, float gammaB)
-{
- if (!pDib) return false;
-
- if (gammaR <= 0.0f) return false;
- if (gammaG <= 0.0f) return false;
- if (gammaB <= 0.0f) return false;
-
- double dinvgamma, dMax;
- int32_t i;
-
- dinvgamma = 1/gammaR;
- dMax = pow(255.0, dinvgamma) / 255.0;
- uint8_t cTableR[256];
- for (i=0;i<256;i++) {
- cTableR[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
- }
-
- dinvgamma = 1/gammaG;
- dMax = pow(255.0, dinvgamma) / 255.0;
- uint8_t cTableG[256];
- for (i=0;i<256;i++) {
- cTableG[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
- }
-
- dinvgamma = 1/gammaB;
- dMax = pow(255.0, dinvgamma) / 255.0;
- uint8_t cTableB[256];
- for (i=0;i<256;i++) {
- cTableB[i] = (uint8_t)max(0,min(255,(int32_t)( pow((double)i, dinvgamma) / dMax)));
- }
-
- return Lut(cTableR, cTableG, cTableB);
-}
-////////////////////////////////////////////////////////////////////////////////
-
-//#if !defined (_WIN32_WCE)
-/**
- * Adjusts the intensity of each pixel to the median intensity of its surrounding pixels.
- * \param Ksize: size of the kernel.
- * \return true if everything is ok
- */
-bool CxImage::Median(int32_t Ksize)
-{
- if (!pDib) return false;
-
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- int32_t i,j,k;
-
- RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD));
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- for(j=-k2, i=0;j<kmax;j++)
- for(k=-k2;k<kmax;k++)
- if (IsInside(x+j,y+k))
- kernel[i++]=BlindGetPixelColor(x+j,y+k);
-
- qsort(kernel, i, sizeof(RGBQUAD), CompareColors);
- tmp.SetPixelColor(x,y,kernel[i/2]);
- }
- }
- }
- free(kernel);
- Transfer(tmp);
- return true;
-}
-//#endif //_WIN32_WCE
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Adds an uniform noise to the image
- * \param level: can be from 0 (no noise) to 255 (lot of noise).
- * \return true if everything is ok
- */
-bool CxImage::Noise(int32_t level)
-{
- if (!pDib) return false;
- RGBQUAD color;
-
- int32_t xmin,xmax,ymin,ymax,n;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin)); //<zhanghk><Anatoly Ivasyuk>
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- color = BlindGetPixelColor(x,y);
- n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
- color.rgbRed = (uint8_t)max(0,min(255,(int32_t)(color.rgbRed + n)));
- n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
- color.rgbGreen = (uint8_t)max(0,min(255,(int32_t)(color.rgbGreen + n)));
- n=(int32_t)((rand()/(float)RAND_MAX - 0.5)*level);
- color.rgbBlue = (uint8_t)max(0,min(255,(int32_t)(color.rgbBlue + n)));
- BlindSetPixelColor(x,y,color);
- }
- }
- }
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Computes the bidimensional FFT or DFT of the image.
- * - The images are processed as grayscale
- * - If the dimensions of the image are a power of, 2 the FFT is performed automatically.
- * - If dstReal and/or dstImag are NULL, the resulting images replaces the original(s).
- * - Note: with 8 bits there is a HUGE loss in the dynamics. The function tries
- * to keep an acceptable SNR, but 8bit = 48dB...
- *
- * \param srcReal, srcImag: source images: One can be NULL, but not both
- * \param dstReal, dstImag: destination images. Can be NULL.
- * \param direction: 1 = forward, -1 = inverse.
- * \param bForceFFT: if true, the images are resampled to make the dimensions a power of 2.
- * \param bMagnitude: if true, the real part returns the magnitude, the imaginary part returns the phase
- * \return true if everything is ok
- */
-bool CxImage::FFT2(CxImage* srcReal, CxImage* srcImag, CxImage* dstReal, CxImage* dstImag,
- int32_t direction, bool bForceFFT, bool bMagnitude)
-{
- //check if there is something to convert
- if (srcReal==NULL && srcImag==NULL) return false;
-
- int32_t w,h;
- //get width and height
- if (srcReal) {
- w=srcReal->GetWidth();
- h=srcReal->GetHeight();
- } else {
- w=srcImag->GetWidth();
- h=srcImag->GetHeight();
- }
-
- bool bXpow2 = IsPowerof2(w);
- bool bYpow2 = IsPowerof2(h);
- //if bForceFFT, width AND height must be powers of 2
- if (bForceFFT && !(bXpow2 && bYpow2)) {
- int32_t i;
-
- i=0;
- while((1<<i)<w) i++;
- w=1<<i;
- bXpow2=true;
-
- i=0;
- while((1<<i)<h) i++;
- h=1<<i;
- bYpow2=true;
- }
-
- // I/O images for FFT
- CxImage *tmpReal,*tmpImag;
-
- // select output
- tmpReal = (dstReal) ? dstReal : srcReal;
- tmpImag = (dstImag) ? dstImag : srcImag;
-
- // src!=dst -> copy the image
- if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false);
- if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false);
-
- // dst&&src are empty -> create new one, else turn to GrayScale
- if (srcReal==0 && dstReal==0){
- tmpReal = new CxImage(w,h,8);
- tmpReal->Clear(0);
- tmpReal->SetGrayPalette();
- } else {
- if (!tmpReal->IsGrayScale()) tmpReal->GrayScale();
- }
- if (srcImag==0 && dstImag==0){
- tmpImag = new CxImage(w,h,8);
- tmpImag->Clear(0);
- tmpImag->SetGrayPalette();
- } else {
- if (!tmpImag->IsGrayScale()) tmpImag->GrayScale();
- }
-
- if (!(tmpReal->IsValid() && tmpImag->IsValid())){
- if (srcReal==0 && dstReal==0) delete tmpReal;
- if (srcImag==0 && dstImag==0) delete tmpImag;
- return false;
- }
-
- //resample for FFT, if necessary
- tmpReal->Resample(w,h,0);
- tmpImag->Resample(w,h,0);
-
- //ok, here we have 2 (w x h), grayscale images ready for a FFT
-
- double* real;
- double* imag;
- int32_t j,k,m;
-
- _complex **grid;
- //double mean = tmpReal->Mean();
- /* Allocate memory for the grid */
- grid = (_complex **)malloc(w * sizeof(_complex));
- for (k=0;k<w;k++) {
- grid[k] = (_complex *)malloc(h * sizeof(_complex));
- }
- for (j=0;j<h;j++) {
- for (k=0;k<w;k++) {
- grid[k][j].x = tmpReal->GetPixelIndex(k,j)-128;
- grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128;
- }
- }
-
- //DFT buffers
- double *real2,*imag2;
- real2 = (double*)malloc(max(w,h) * sizeof(double));
- imag2 = (double*)malloc(max(w,h) * sizeof(double));
-
- /* Transform the rows */
- real = (double *)malloc(w * sizeof(double));
- imag = (double *)malloc(w * sizeof(double));
-
- m=0;
- while((1<<m)<w) m++;
-
- for (j=0;j<h;j++) {
- for (k=0;k<w;k++) {
- real[k] = grid[k][j].x;
- imag[k] = grid[k][j].y;
- }
-
- if (bXpow2) FFT(direction,m,real,imag);
- else DFT(direction,w,real,imag,real2,imag2);
-
- for (k=0;k<w;k++) {
- grid[k][j].x = real[k];
- grid[k][j].y = imag[k];
- }
- }
- free(real);
- free(imag);
-
- /* Transform the columns */
- real = (double *)malloc(h * sizeof(double));
- imag = (double *)malloc(h * sizeof(double));
-
- m=0;
- while((1<<m)<h) m++;
-
- for (k=0;k<w;k++) {
- for (j=0;j<h;j++) {
- real[j] = grid[k][j].x;
- imag[j] = grid[k][j].y;
- }
-
- if (bYpow2) FFT(direction,m,real,imag);
- else DFT(direction,h,real,imag,real2,imag2);
-
- for (j=0;j<h;j++) {
- grid[k][j].x = real[j];
- grid[k][j].y = imag[j];
- }
- }
- free(real);
- free(imag);
-
- free(real2);
- free(imag2);
-
- /* converting from double to byte, there is a HUGE loss in the dynamics
- "nn" tries to keep an acceptable SNR, but 8bit=48dB: don't ask more */
- double nn=pow((double)2,(double)log((double)max(w,h))/(double)log((double)2)-4);
- //reversed gain for reversed transform
- if (direction==-1) nn=1/nn;
- //bMagnitude : just to see it on the screen
- if (bMagnitude) nn*=4;
-
- for (j=0;j<h;j++) {
- for (k=0;k<w;k++) {
- if (bMagnitude){
- tmpReal->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(nn*(3+log(_cabs(grid[k][j])))))));
- if (grid[k][j].x==0){
- tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn)))));
- } else {
- tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn)))));
- }
- } else {
- tmpReal->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128 + grid[k][j].x*nn))));
- tmpImag->SetPixelIndex(k,j,(uint8_t)max(0,min(255,(128 + grid[k][j].y*nn))));
- }
- }
- }
-
- for (k=0;k<w;k++) free (grid[k]);
- free (grid);
-
- if (srcReal==0 && dstReal==0) delete tmpReal;
- if (srcImag==0 && dstImag==0) delete tmpImag;
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-bool CxImage::IsPowerof2(int32_t x)
-{
- int32_t i=0;
- while ((1<<i)<x) i++;
- if (x==(1<<i)) return true;
- return false;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- This computes an in-place complex-to-complex FFT
- x and y are the real and imaginary arrays of n=2^m points.
- o(n)=n*log2(n)
- dir = 1 gives forward transform
- dir = -1 gives reverse transform
- Written by Paul Bourke, July 1998
- FFT algorithm by Cooley and Tukey, 1965
-*/
-bool CxImage::FFT(int32_t dir,int32_t m,double *x,double *y)
-{
- int32_t nn,i,i1,j,k,i2,l,l1,l2;
- double c1,c2,tx,ty,t1,t2,u1,u2,z;
-
- /* Calculate the number of points */
- nn = 1<<m;
-
- /* Do the bit reversal */
- i2 = nn >> 1;
- j = 0;
- for (i=0;i<nn-1;i++) {
- if (i < j) {
- tx = x[i];
- ty = y[i];
- x[i] = x[j];
- y[i] = y[j];
- x[j] = tx;
- y[j] = ty;
- }
- k = i2;
- while (k <= j) {
- j -= k;
- k >>= 1;
- }
- j += k;
- }
-
- /* Compute the FFT */
- c1 = -1.0;
- c2 = 0.0;
- l2 = 1;
- for (l=0;l<m;l++) {
- l1 = l2;
- l2 <<= 1;
- u1 = 1.0;
- u2 = 0.0;
- for (j=0;j<l1;j++) {
- for (i=j;i<nn;i+=l2) {
- i1 = i + l1;
- t1 = u1 * x[i1] - u2 * y[i1];
- t2 = u1 * y[i1] + u2 * x[i1];
- x[i1] = x[i] - t1;
- y[i1] = y[i] - t2;
- x[i] += t1;
- y[i] += t2;
- }
- z = u1 * c1 - u2 * c2;
- u2 = u1 * c2 + u2 * c1;
- u1 = z;
- }
- c2 = sqrt((1.0 - c1) / 2.0);
- if (dir == 1)
- c2 = -c2;
- c1 = sqrt((1.0 + c1) / 2.0);
- }
-
- /* Scaling for forward transform */
- if (dir == 1) {
- for (i=0;i<nn;i++) {
- x[i] /= (double)nn;
- y[i] /= (double)nn;
- }
- }
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- Direct fourier transform o(n)=n^2
- Written by Paul Bourke, July 1998
-*/
-bool CxImage::DFT(int32_t dir,int32_t m,double *x1,double *y1,double *x2,double *y2)
-{
- int32_t i,k;
- double arg;
- double cosarg,sinarg;
-
- for (i=0;i<m;i++) {
- x2[i] = 0;
- y2[i] = 0;
- arg = - dir * 2.0 * PI * i / (double)m;
- for (k=0;k<m;k++) {
- cosarg = cos(k * arg);
- sinarg = sin(k * arg);
- x2[i] += (x1[k] * cosarg - y1[k] * sinarg);
- y2[i] += (x1[k] * sinarg + y1[k] * cosarg);
- }
- }
-
- /* Copy the data back */
- if (dir == 1) {
- for (i=0;i<m;i++) {
- x1[i] = x2[i] / m;
- y1[i] = y2[i] / m;
- }
- } else {
- for (i=0;i<m;i++) {
- x1[i] = x2[i];
- y1[i] = y2[i];
- }
- }
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Combines different color components into a single image
- * \param r,g,b: color channels
- * \param a: alpha layer, can be NULL
- * \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
- * \return true if everything is ok
- */
-bool CxImage::Combine(CxImage* r,CxImage* g,CxImage* b,CxImage* a, int32_t colorspace)
-{
- if (r==0 || g==0 || b==0) return false;
-
- int32_t w = r->GetWidth();
- int32_t h = r->GetHeight();
-
- Create(w,h,24);
-
- g->Resample(w,h);
- b->Resample(w,h);
-
- if (a) {
- a->Resample(w,h);
-#if CXIMAGE_SUPPORT_ALPHA
- AlphaCreate();
-#endif //CXIMAGE_SUPPORT_ALPHA
- }
-
- RGBQUAD c;
- for (int32_t y=0;y<h;y++){
- info.nProgress = (int32_t)(100*y/h); //<Anatoly Ivasyuk>
- for (int32_t x=0;x<w;x++){
- c.rgbRed=r->GetPixelIndex(x,y);
- c.rgbGreen=g->GetPixelIndex(x,y);
- c.rgbBlue=b->GetPixelIndex(x,y);
- switch (colorspace){
- case 1:
- BlindSetPixelColor(x,y,HSLtoRGB(c));
- break;
- case 2:
- BlindSetPixelColor(x,y,YUVtoRGB(c));
- break;
- case 3:
- BlindSetPixelColor(x,y,YIQtoRGB(c));
- break;
- case 4:
- BlindSetPixelColor(x,y,XYZtoRGB(c));
- break;
- default:
- BlindSetPixelColor(x,y,c);
- }
-#if CXIMAGE_SUPPORT_ALPHA
- if (a) AlphaSet(x,y,a->GetPixelIndex(x,y));
-#endif //CXIMAGE_SUPPORT_ALPHA
- }
- }
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Smart blurring to remove small defects, dithering or artifacts.
- * \param radius: normally between 0.01 and 0.5
- * \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1
- * \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
- * \return true if everything is ok
- */
-bool CxImage::Repair(float radius, int32_t niterations, int32_t colorspace)
-{
- if (!IsValid()) return false;
-
- int32_t w = GetWidth();
- int32_t h = GetHeight();
-
- CxImage r,g,b;
-
- r.Create(w,h,8);
- g.Create(w,h,8);
- b.Create(w,h,8);
-
- switch (colorspace){
- case 1:
- SplitHSL(&r,&g,&b);
- break;
- case 2:
- SplitYUV(&r,&g,&b);
- break;
- case 3:
- SplitYIQ(&r,&g,&b);
- break;
- case 4:
- SplitXYZ(&r,&g,&b);
- break;
- default:
- SplitRGB(&r,&g,&b);
- }
-
- for (int32_t i=0; i<niterations; i++){
- RepairChannel(&r,radius);
- RepairChannel(&g,radius);
- RepairChannel(&b,radius);
- }
-
- CxImage* a=NULL;
-#if CXIMAGE_SUPPORT_ALPHA
- if (AlphaIsValid()){
- a = new CxImage();
- AlphaSplit(a);
- }
-#endif
-
- Combine(&r,&g,&b,a,colorspace);
-
- delete a;
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-bool CxImage::RepairChannel(CxImage *ch, float radius)
-{
- if (ch==NULL) return false;
-
- CxImage tmp(*ch);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t w = ch->GetWidth()-1;
- int32_t h = ch->GetHeight()-1;
-
- double correction,ix,iy,ixx,ixy,iyy;
- int32_t x,y,xy0,xp1,xm1,yp1,ym1;
-
- for(x=1; x<w; x++){
- for(y=1; y<h; y++){
-
- xy0 = ch->BlindGetPixelIndex(x,y);
- xm1 = ch->BlindGetPixelIndex(x-1,y);
- xp1 = ch->BlindGetPixelIndex(x+1,y);
- ym1 = ch->BlindGetPixelIndex(x,y-1);
- yp1 = ch->BlindGetPixelIndex(x,y+1);
-
- ix= (xp1-xm1)/2.0;
- iy= (yp1-ym1)/2.0;
- ixx= xp1 - 2.0 * xy0 + xm1;
- iyy= yp1 - 2.0 * xy0 + ym1;
- ixy=(ch->BlindGetPixelIndex(x+1,y+1) + ch->BlindGetPixelIndex(x-1,y-1) -
- ch->BlindGetPixelIndex(x-1,y+1) - ch->BlindGetPixelIndex(x+1,y-1))/4.0;
-
- correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
-
- tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
- }
- }
-
- for (x=0;x<=w;x++){
- for(y=0; y<=h; y+=h){
- xy0 = ch->BlindGetPixelIndex(x,y);
- xm1 = ch->GetPixelIndex(x-1,y);
- xp1 = ch->GetPixelIndex(x+1,y);
- ym1 = ch->GetPixelIndex(x,y-1);
- yp1 = ch->GetPixelIndex(x,y+1);
-
- ix= (xp1-xm1)/2.0;
- iy= (yp1-ym1)/2.0;
- ixx= xp1 - 2.0 * xy0 + xm1;
- iyy= yp1 - 2.0 * xy0 + ym1;
- ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
- ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
-
- correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
-
- tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
- }
- }
- for (x=0;x<=w;x+=w){
- for (y=0;y<=h;y++){
- xy0 = ch->BlindGetPixelIndex(x,y);
- xm1 = ch->GetPixelIndex(x-1,y);
- xp1 = ch->GetPixelIndex(x+1,y);
- ym1 = ch->GetPixelIndex(x,y-1);
- yp1 = ch->GetPixelIndex(x,y+1);
-
- ix= (xp1-xm1)/2.0;
- iy= (yp1-ym1)/2.0;
- ixx= xp1 - 2.0 * xy0 + xm1;
- iyy= yp1 - 2.0 * xy0 + ym1;
- ixy=(ch->GetPixelIndex(x+1,y+1) + ch->GetPixelIndex(x-1,y-1) -
- ch->GetPixelIndex(x-1,y+1) - ch->GetPixelIndex(x+1,y-1))/4.0;
-
- correction = ((1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy)/(1.0+ix*ix+iy*iy);
-
- tmp.BlindSetPixelIndex(x,y,(uint8_t)min(255,max(0,(xy0 + radius * correction + 0.5))));
- }
- }
-
- ch->Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Enhance the variations between adjacent pixels.
- * Similar results can be achieved using Filter(),
- * but the algorithms are different both in Edge() and in Contour().
- * \return true if everything is ok
- */
-bool CxImage::Contour()
-{
- if (!pDib) return false;
-
- int32_t Ksize = 3;
- int32_t k2 = Ksize/2;
- int32_t kmax= Ksize-k2;
- int32_t i,j,k;
- uint8_t maxr,maxg,maxb;
- RGBQUAD pix1,pix2;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- pix1 = BlindGetPixelColor(x,y);
- maxr=maxg=maxb=0;
- for(j=-k2, i=0;j<kmax;j++){
- for(k=-k2;k<kmax;k++, i++){
- if (!IsInside(x+j,y+k)) continue;
- pix2 = BlindGetPixelColor(x+j,y+k);
- if ((pix2.rgbBlue-pix1.rgbBlue)>maxb) maxb = pix2.rgbBlue;
- if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen;
- if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed;
- }
- }
- pix1.rgbBlue=(uint8_t)(255-maxb);
- pix1.rgbGreen=(uint8_t)(255-maxg);
- pix1.rgbRed=(uint8_t)(255-maxr);
- tmp.BlindSetPixelColor(x,y,pix1);
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Adds a random offset to each pixel in the image
- * \param radius: maximum pixel displacement
- * \return true if everything is ok
- */
-bool CxImage::Jitter(int32_t radius)
-{
- if (!pDib) return false;
-
- int32_t nx,ny;
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- nx=x+(int32_t)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
- ny=y+(int32_t)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
- if (!IsInside(nx,ny)) {
- nx=x;
- ny=y;
- }
- if (head.biClrUsed==0){
- tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(nx,ny));
- } else {
- tmp.BlindSetPixelIndex(x,y,BlindGetPixelIndex(nx,ny));
- }
-#if CXIMAGE_SUPPORT_ALPHA
- tmp.AlphaSet(x,y,AlphaGet(nx,ny));
-#endif //CXIMAGE_SUPPORT_ALPHA
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * generates a 1-D convolution matrix to be used for each pass of
- * a two-pass gaussian blur. Returns the length of the matrix.
- * \author [nipper]
- */
-int32_t CxImage::gen_convolve_matrix (float radius, float **cmatrix_p)
-{
- int32_t matrix_length;
- int32_t matrix_midpoint;
- float* cmatrix;
- int32_t i,j;
- float std_dev;
- float sum;
-
- /* we want to generate a matrix that goes out a certain radius
- * from the center, so we have to go out ceil(rad-0.5) pixels,
- * inlcuding the center pixel. Of course, that's only in one direction,
- * so we have to go the same amount in the other direction, but not count
- * the center pixel again. So we double the previous result and subtract
- * one.
- * The radius parameter that is passed to this function is used as
- * the standard deviation, and the radius of effect is the
- * standard deviation * 2. It's a little confusing.
- * <DP> modified scaling, so that matrix_lenght = 1+2*radius parameter
- */
- radius = (float)fabs(0.5*radius) + 0.25f;
-
- std_dev = radius;
- radius = std_dev * 2;
-
- /* go out 'radius' in each direction */
- matrix_length = int32_t (2 * ceil(radius-0.5) + 1);
- if (matrix_length <= 0) matrix_length = 1;
- matrix_midpoint = matrix_length/2 + 1;
- *cmatrix_p = new float[matrix_length];
- cmatrix = *cmatrix_p;
-
- /* Now we fill the matrix by doing a numeric integration approximation
- * from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
- * We do the bottom half, mirror it to the top half, then compute the
- * center point. Otherwise asymmetric quantization errors will occur.
- * The formula to integrate is e^-(x^2/2s^2).
- */
-
- /* first we do the top (right) half of matrix */
- for (i = matrix_length/2 + 1; i < matrix_length; i++)
- {
- float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
- sum = 0;
- for (j = 1; j <= 50; j++)
- {
- if ( base_x+0.02*j <= radius )
- sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) /
- (2*std_dev*std_dev));
- }
- cmatrix[i] = sum/50;
- }
-
- /* mirror the thing to the bottom half */
- for (i=0; i<=matrix_length/2; i++) {
- cmatrix[i] = cmatrix[matrix_length-1-i];
- }
-
- /* find center val -- calculate an odd number of quanta to make it symmetric,
- * even if the center point is weighted slightly higher than others. */
- sum = 0;
- for (j=0; j<=50; j++)
- {
- sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
- (2*std_dev*std_dev));
- }
- cmatrix[matrix_length/2] = sum/51;
-
- /* normalize the distribution by scaling the total sum to one */
- sum=0;
- for (i=0; i<matrix_length; i++) sum += cmatrix[i];
- for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
-
- return matrix_length;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * generates a lookup table for every possible product of 0-255 and
- * each value in the convolution matrix. The returned array is
- * indexed first by matrix position, then by input multiplicand (?)
- * value.
- * \author [nipper]
- */
-float* CxImage::gen_lookup_table (float *cmatrix, int32_t cmatrix_length)
-{
- float* lookup_table = new float[cmatrix_length * 256];
- float* lookup_table_p = lookup_table;
- float* cmatrix_p = cmatrix;
-
- for (int32_t i=0; i<cmatrix_length; i++)
- {
- for (int32_t j=0; j<256; j++)
- {
- *(lookup_table_p++) = *cmatrix_p * (float)j;
- }
- cmatrix_p++;
- }
-
- return lookup_table;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * this function is written as if it is blurring a column at a time,
- * even though it can operate on rows, too. There is no difference
- * in the processing of the lines, at least to the blur_line function.
- * \author [nipper]
- */
-void CxImage::blur_line (float *ctable, float *cmatrix, int32_t cmatrix_length, uint8_t* cur_col, uint8_t* dest_col, int32_t y, int32_t bytes)
-{
- float scale;
- float sum;
- int32_t i=0, j=0;
- int32_t row;
- int32_t cmatrix_middle = cmatrix_length/2;
-
- float *cmatrix_p;
- uint8_t *cur_col_p;
- uint8_t *cur_col_p1;
- uint8_t *dest_col_p;
- float *ctable_p;
-
- /* this first block is the same as the non-optimized version --
- * it is only used for very small pictures, so speed isn't a
- * big concern.
- */
- if (cmatrix_length > y)
- {
- for (row = 0; row < y ; row++)
- {
- scale=0;
- /* find the scale factor */
- for (j = 0; j < y ; j++)
- {
- /* if the index is in bounds, add it to the scale counter */
- if ((j + cmatrix_middle - row >= 0) &&
- (j + cmatrix_middle - row < cmatrix_length))
- scale += cmatrix[j + cmatrix_middle - row];
- }
- for (i = 0; i<bytes; i++)
- {
- sum = 0;
- for (j = 0; j < y; j++)
- {
- if ((j >= row - cmatrix_middle) &&
- (j <= row + cmatrix_middle))
- sum += cur_col[j*bytes + i] * cmatrix[j];
- }
- dest_col[row*bytes + i] = (uint8_t)(0.5f + sum / scale);
- }
- }
- }
- else
- {
- /* for the edge condition, we only use available info and scale to one */
- for (row = 0; row < cmatrix_middle; row++)
- {
- /* find scale factor */
- scale=0;
- for (j = cmatrix_middle - row; j<cmatrix_length; j++)
- scale += cmatrix[j];
- for (i = 0; i<bytes; i++)
- {
- sum = 0;
- for (j = cmatrix_middle - row; j<cmatrix_length; j++)
- {
- sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
- }
- dest_col[row*bytes + i] = (uint8_t)(0.5f + sum / scale);
- }
- }
- /* go through each pixel in each col */
- dest_col_p = dest_col + row*bytes;
- for (; row < y-cmatrix_middle; row++)
- {
- cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
- for (i = 0; i<bytes; i++)
- {
- sum = 0;
- cmatrix_p = cmatrix;
- cur_col_p1 = cur_col_p;
- ctable_p = ctable;
- for (j = cmatrix_length; j>0; j--)
- {
- sum += *(ctable_p + *cur_col_p1);
- cur_col_p1 += bytes;
- ctable_p += 256;
- }
- cur_col_p++;
- *(dest_col_p++) = (uint8_t)(0.5f + sum);
- }
- }
-
- /* for the edge condition , we only use available info, and scale to one */
- for (; row < y; row++)
- {
- /* find scale factor */
- scale=0;
- for (j = 0; j< y-row + cmatrix_middle; j++)
- scale += cmatrix[j];
- for (i = 0; i<bytes; i++)
- {
- sum = 0;
- for (j = 0; j<y-row + cmatrix_middle; j++)
- {
- sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
- }
- dest_col[row*bytes + i] = (uint8_t) (0.5f + sum / scale);
- }
- }
- }
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * \author [DP]
- */
-void CxImage::blur_text (uint8_t threshold, uint8_t decay, uint8_t max_depth, CxImage* iSrc, CxImage* iDst, uint8_t bytes)
-{
- int32_t x,y,z,m;
- uint8_t *pSrc, *pSrc2, *pSrc3, *pDst;
- uint8_t step,n;
- int32_t pivot;
-
- if (max_depth<1) max_depth = 1;
-
- int32_t nmin,nmax,xmin,xmax,ymin,ymax;
- xmin = ymin = 0;
- xmax = iSrc->head.biWidth;
- ymax = iSrc->head.biHeight;
-
- if (xmin==xmax || ymin==ymax) return;
-
- nmin = xmin * bytes;
- nmax = xmax * bytes;
-
- CImageIterator itSrc(iSrc);
- CImageIterator itTmp(iDst);
-
- double dbScaler = 100.0f/(ymax-ymin)/bytes;
-
- for (n=0; n<bytes; n++){
- for (y=ymin+1;y<(ymax-1);y++)
- {
- if (info.nEscape) break;
- info.nProgress = (int32_t)((y-ymin)*dbScaler*(1+n));
-
- pSrc = itSrc.GetRow(y);
- pSrc2 = itSrc.GetRow(y+1);
- pSrc3 = itSrc.GetRow(y-1);
- pDst = itTmp.GetRow(y);
-
- //scan left to right
- for (x=n+nmin /*,i=xmin*/; x<(nmax-1); x+=bytes /*,i++*/)
- {
- z=x+bytes;
- pivot = pSrc[z]-threshold;
- //find upper corner
- if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
- while (z<nmax && pSrc2[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
- z+=bytes;
- }
- m = z-x;
- m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
- if (m>max_depth) m = max_depth;
- step = (uint8_t)((pSrc[x+bytes]-pSrc[x])/(m+1));
- while (m-->1){
- pDst[x+m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
- }
- }
- //find lower corner
- z=x+bytes;
- if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
- while (z<nmax && pSrc3[z]<pSrc[x+bytes] && pSrc[x+bytes]<=pSrc[z]){
- z+=bytes;
- }
- m = z-x;
- m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
- if (m>max_depth) m = max_depth;
- step = (uint8_t)((pSrc[x+bytes]-pSrc[x])/(m+1));
- while (m-->1){
- pDst[x+m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
- }
- }
- }
- //scan right to left
- for (x=nmax-1-n /*,i=(xmax-1)*/; x>0; x-=bytes /*,i--*/)
- {
- z=x-bytes;
- pivot = pSrc[z]-threshold;
- //find upper corner
- if (pSrc[x]<pivot && pSrc2[z]<pivot && pSrc3[x]>=pivot){
- while (z>n && pSrc2[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
- z-=bytes;
- }
- m = x-z;
- m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
- if (m>max_depth) m = max_depth;
- step = (uint8_t)((pSrc[x-bytes]-pSrc[x])/(m+1));
- while (m-->1){
- pDst[x-m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
- }
- }
- //find lower corner
- z=x-bytes;
- if (pSrc[x]<pivot && pSrc3[z]<pivot && pSrc2[x]>=pivot){
- while (z>n && pSrc3[z]<pSrc[x-bytes] && pSrc[x-bytes]<=pSrc[z]){
- z-=bytes;
- }
- m = x-z;
- m = (decay>1) ? ((m/bytes)/decay+1) : m/bytes;
- if (m>max_depth) m = max_depth;
- step = (uint8_t)((pSrc[x-bytes]-pSrc[x])/(m+1));
- while (m-->1){
- pDst[x-m*bytes] = (uint8_t)(pDst[x]+(step*(m+1)));
- }
- }
- }
- }
- }
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * \author [DP]
- */
-bool CxImage::TextBlur(uint8_t threshold, uint8_t decay, uint8_t max_depth, bool bBlurHorizontal, bool bBlurVertical, CxImage* iDst)
-{
- if (!pDib) return false;
-
- RGBQUAD* pPalette=NULL;
- uint16_t bpp = GetBpp();
-
- //the routine is optimized for RGB or GrayScale images
- if (!(head.biBitCount == 24 || IsGrayScale())){
- pPalette = new RGBQUAD[head.biClrUsed];
- memcpy(pPalette, GetPalette(),GetPaletteSize());
- if (!IncreaseBpp(24))
- return false;
- }
-
- CxImage tmp(*this);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
-
- if (bBlurHorizontal)
- blur_text(threshold, decay, max_depth, this, &tmp, head.biBitCount>>3);
-
- if (bBlurVertical){
- CxImage src2(*this);
- src2.RotateLeft();
- tmp.RotateLeft();
- blur_text(threshold, decay, max_depth, &src2, &tmp, head.biBitCount>>3);
- tmp.RotateRight();
- }
-
-#if CXIMAGE_SUPPORT_SELECTION
- //restore the non selected region
- if (pSelection){
- for(int32_t y=0; y<head.biHeight; y++){
- for(int32_t x=0; x<head.biWidth; x++){
- if (!BlindSelectionIsInside(x,y)){
- tmp.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
- }
- }
- }
- }
-#endif //CXIMAGE_SUPPORT_SELECTION
-
- //if necessary, restore the original BPP and palette
- if (pPalette){
- tmp.DecreaseBpp(bpp, true, pPalette);
- delete [] pPalette;
- }
-
- if (iDst) iDst->Transfer(tmp);
- else Transfer(tmp);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * \author [nipper]; changes [DP]
- */
-bool CxImage::GaussianBlur(float radius /*= 1.0f*/, CxImage* iDst /*= 0*/)
-{
- if (!pDib) return false;
-
- RGBQUAD* pPalette=NULL;
- uint16_t bpp = GetBpp();
-
- //the routine is optimized for RGB or GrayScale images
- if (!(head.biBitCount == 24 || IsGrayScale())){
- pPalette = new RGBQUAD[head.biClrUsed];
- memcpy(pPalette, GetPalette(),GetPaletteSize());
- if (!IncreaseBpp(24))
- return false;
- }
-
- CxImage tmp_x(*this, false, true, true);
- if (!tmp_x.IsValid()){
- strcpy(info.szLastError,tmp_x.GetLastError());
- return false;
- }
-
- // generate convolution matrix and make sure it's smaller than each dimension
- float *cmatrix = NULL;
- int32_t cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
- // generate lookup table
- float *ctable = gen_lookup_table(cmatrix, cmatrix_length);
-
- int32_t x,y;
- int32_t bypp = head.biBitCount>>3;
-
- CImageIterator itSrc(this);
- CImageIterator itTmp(&tmp_x);
-
- double dbScaler = 50.0f/head.biHeight;
-
- // blur the rows
- for (y=0;y<head.biHeight;y++)
- {
- if (info.nEscape) break;
- info.nProgress = (int32_t)(y*dbScaler);
-
- blur_line(ctable, cmatrix, cmatrix_length, itSrc.GetRow(y), itTmp.GetRow(y), head.biWidth, bypp);
- }
-
- CxImage tmp_y(tmp_x, false, true, true);
- if (!tmp_y.IsValid()){
- strcpy(info.szLastError,tmp_y.GetLastError());
- return false;
- }
-
- CImageIterator itDst(&tmp_y);
-
- // blur the cols
- uint8_t* cur_col = (uint8_t*)malloc(bypp*head.biHeight);
- uint8_t* dest_col = (uint8_t*)malloc(bypp*head.biHeight);
-
- dbScaler = 50.0f/head.biWidth;
-
- for (x=0;x<head.biWidth;x++)
- {
- if (info.nEscape) break;
- info.nProgress = (int32_t)(50.0f+x*dbScaler);
-
- itTmp.GetCol(cur_col, x);
- itDst.GetCol(dest_col, x);
- blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, head.biHeight, bypp);
- itDst.SetCol(dest_col, x);
- }
-
- free(cur_col);
- free(dest_col);
-
- delete [] cmatrix;
- delete [] ctable;
-
-#if CXIMAGE_SUPPORT_SELECTION
- //restore the non selected region
- if (pSelection){
- for(y=0; y<head.biHeight; y++){
- for(x=0; x<head.biWidth; x++){
- if (!BlindSelectionIsInside(x,y)){
- tmp_y.BlindSetPixelColor(x,y,BlindGetPixelColor(x,y));
- }
- }
- }
- }
-#endif //CXIMAGE_SUPPORT_SELECTION
-
- //if necessary, restore the original BPP and palette
- if (pPalette){
- tmp_y.DecreaseBpp(bpp, false, pPalette);
- if (iDst) DecreaseBpp(bpp, false, pPalette);
- delete [] pPalette;
- }
-
- if (iDst) iDst->Transfer(tmp_y);
- else Transfer(tmp_y);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * \author [DP],[nipper]
- */
-bool CxImage::SelectiveBlur(float radius, uint8_t threshold, CxImage* iDst)
-{
- if (!pDib) return false;
-
- RGBQUAD* pPalette=NULL;
- uint16_t bpp = GetBpp();
-
- CxImage Tmp(*this, true, true, true);
- if (!Tmp.IsValid()){
- strcpy(info.szLastError,Tmp.GetLastError());
- return false;
- }
-
- //the routine is optimized for RGB or GrayScale images
- if (!(head.biBitCount == 24 || IsGrayScale())){
- pPalette = new RGBQUAD[head.biClrUsed];
- memcpy(pPalette, GetPalette(),GetPaletteSize());
- if (!Tmp.IncreaseBpp(24)){
- delete [] pPalette;
- return false;
- }
- }
-
- CxImage Dst(Tmp, true, true, true);
- if (!Dst.IsValid()){
- strcpy(info.szLastError,Dst.GetLastError());
- delete [] pPalette;
- return false;
- }
-
- //build the difference mask
- uint8_t thresh_dw = (uint8_t)max( 0 ,(int32_t)(128 - threshold));
- uint8_t thresh_up = (uint8_t)min(255,(int32_t)(128 + threshold));
- int32_t kernel[]={-100,-100,-100,-100,801,-100,-100,-100,-100};
- if (!Tmp.Filter(kernel,3,800,128)){
- strcpy(info.szLastError,Tmp.GetLastError());
- delete [] pPalette;
- return false;
- }
-
- //if the image has no selection, build a selection for the whole image
-#if CXIMAGE_SUPPORT_SELECTION
- if (!Tmp.SelectionIsValid()){
- Tmp.SelectionCreate();
- Tmp.SelectionClear(255);
- }
-
- int32_t xmin,xmax,ymin,ymax;
- xmin = Tmp.info.rSelectionBox.left;
- xmax = Tmp.info.rSelectionBox.right;
- ymin = Tmp.info.rSelectionBox.bottom;
- ymax = Tmp.info.rSelectionBox.top;
-
- //modify the selection where the difference mask is over the threshold
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
- if(Tmp.BlindSelectionIsInside(x,y)){
- RGBQUAD c = Tmp.BlindGetPixelColor(x,y);
- if ((c.rgbRed < thresh_dw || c.rgbRed > thresh_up) ||
- (c.rgbGreen < thresh_dw || c.rgbGreen > thresh_up) ||
- (c.rgbBlue < thresh_dw || c.rgbBlue > thresh_up))
- {
- Tmp.SelectionSet(x,y,0);
- }
- }
- }
- }
-
- //blur the image (only in the selected pixels)
- Dst.SelectionCopy(Tmp);
- if (!Dst.GaussianBlur(radius)){
- strcpy(info.szLastError,Dst.GetLastError());
- delete [] pPalette;
- return false;
- }
-
- //restore the original selection
- Dst.SelectionCopy(*this);
-#endif //CXIMAGE_SUPPORT_SELECTION
-
- //if necessary, restore the original BPP and palette
- if (pPalette){
- Dst.DecreaseBpp(bpp, false, pPalette);
- delete [] pPalette;
- }
-
- if (iDst) iDst->Transfer(Dst);
- else Transfer(Dst);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * sharpen the image by subtracting a blurred copy from the original image.
- * \param radius: width in pixels of the blurring effect. Range: >0; default = 5.
- * \param amount: strength of the filter. Range: 0.0 (none) to 1.0 (max); default = 0.5
- * \param threshold: difference, between blurred and original pixel, to trigger the filter
- * Range: 0 (always triggered) to 255 (never triggered); default = 0.
- * \return true if everything is ok
- * \author [nipper]; changes [DP]
- */
-bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int32_t threshold /*= 0*/)
-{
- if (!pDib) return false;
-
- RGBQUAD* pPalette=NULL;
- uint16_t bpp = GetBpp();
-
- //the routine is optimized for RGB or GrayScale images
- if (!(head.biBitCount == 24 || IsGrayScale())){
- pPalette = new RGBQUAD[head.biClrUsed];
- memcpy(pPalette, GetPalette(),GetPaletteSize());
- if (!IncreaseBpp(24))
- return false;
- }
-
- CxImage iDst;
- if (!GaussianBlur(radius,&iDst))
- return false;
-
- CImageIterator itSrc(this);
- CImageIterator itDst(&iDst);
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- double dbScaler = 100.0/(ymax-ymin);
- int32_t bypp = head.biBitCount>>3;
-
- // merge the source and destination (which currently contains
- // the blurred version) images
- for (int32_t y=ymin; y<ymax; y++)
- {
- if (info.nEscape) break;
- info.nProgress = (int32_t)((y-ymin)*dbScaler);
-
- // get source row
- uint8_t* cur_row = itSrc.GetRow(y);
- // get dest row
- uint8_t* dest_row = itDst.GetRow(y);
- // combine the two
- for (int32_t x=xmin; x<xmax; x++) {
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- for (int32_t b=0, z=x*bypp; b<bypp; b++, z++){
- int32_t diff = cur_row[z] - dest_row[z];
-
- // do tresholding
- if (abs(diff) < threshold){
- dest_row[z] = cur_row[z];
- } else {
- dest_row[z] = (uint8_t)min(255, max(0,(int32_t)(cur_row[z] + amount * diff)));
- }
- }
- }
- }
- }
-
- //if necessary, restore the original BPP and palette
- if (pPalette){
- iDst.DecreaseBpp(bpp, false, pPalette);
- delete [] pPalette;
- }
-
- Transfer(iDst);
-
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Apply a look up table to the image.
- * \param pLut: uint8_t[256] look up table
- * \return true if everything is ok
- */
-bool CxImage::Lut(uint8_t* pLut)
-{
- if (!pDib || !pLut) return false;
- RGBQUAD color;
-
- double dbScaler;
- if (head.biClrUsed==0){
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- // faster loop for full image
- uint8_t *iSrc=info.pImage;
- for(uint32_t i=0; i < head.biSizeImage ; i++){
- *iSrc++ = pLut[*iSrc];
- }
- return true;
- }
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- dbScaler = 100.0/(ymax-ymin);
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)((y-ymin)*dbScaler); //<Anatoly Ivasyuk>
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- color = BlindGetPixelColor(x,y);
- color.rgbRed = pLut[color.rgbRed];
- color.rgbGreen = pLut[color.rgbGreen];
- color.rgbBlue = pLut[color.rgbBlue];
- BlindSetPixelColor(x,y,color);
- }
- }
- }
-#if CXIMAGE_SUPPORT_SELECTION
- } else if (pSelection && (head.biBitCount==8) && IsGrayScale()){
- int32_t xmin,xmax,ymin,ymax;
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- dbScaler = 100.0/(ymax-ymin);
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)((y-ymin)*dbScaler);
- for(int32_t x=xmin; x<xmax; x++){
- if (BlindSelectionIsInside(x,y))
- {
- BlindSetPixelIndex(x,y,pLut[BlindGetPixelIndex(x,y)]);
- }
- }
- }
-#endif //CXIMAGE_SUPPORT_SELECTION
- } else {
- bool bIsGrayScale = IsGrayScale();
- for(uint32_t j=0; j<head.biClrUsed; j++){
- color = GetPaletteColor((uint8_t)j);
- color.rgbRed = pLut[color.rgbRed];
- color.rgbGreen = pLut[color.rgbGreen];
- color.rgbBlue = pLut[color.rgbBlue];
- SetPaletteColor((uint8_t)j,color);
- }
- if (bIsGrayScale) GrayScale();
- }
- return true;
-
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Apply an indipendent look up table for each channel
- * \param pLutR, pLutG, pLutB, pLutA: uint8_t[256] look up tables
- * \return true if everything is ok
- */
-bool CxImage::Lut(uint8_t* pLutR, uint8_t* pLutG, uint8_t* pLutB, uint8_t* pLutA)
-{
- if (!pDib || !pLutR || !pLutG || !pLutB) return false;
- RGBQUAD color;
-
- double dbScaler;
- if (head.biClrUsed==0){
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- dbScaler = 100.0/(ymax-ymin);
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)((y-ymin)*dbScaler);
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- color = BlindGetPixelColor(x,y);
- color.rgbRed = pLutR[color.rgbRed];
- color.rgbGreen = pLutG[color.rgbGreen];
- color.rgbBlue = pLutB[color.rgbBlue];
- if (pLutA) color.rgbReserved=pLutA[color.rgbReserved];
- BlindSetPixelColor(x,y,color,true);
- }
- }
- }
- } else {
- bool bIsGrayScale = IsGrayScale();
- for(uint32_t j=0; j<head.biClrUsed; j++){
- color = GetPaletteColor((uint8_t)j);
- color.rgbRed = pLutR[color.rgbRed];
- color.rgbGreen = pLutG[color.rgbGreen];
- color.rgbBlue = pLutB[color.rgbBlue];
- SetPaletteColor((uint8_t)j,color);
- }
- if (bIsGrayScale) GrayScale();
- }
-
- return true;
-
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Use the RedEyeRemove function to remove the red-eye effect that frequently
- * occurs in photographs of humans and animals. You must select the region
- * where the function will filter the red channel.
- * \param strength: range from 0.0f (no effect) to 1.0f (full effect). Default = 0.8
- * \return true if everything is ok
- */
-bool CxImage::RedEyeRemove(float strength)
-{
- if (!pDib) return false;
- RGBQUAD color;
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- if (strength<0.0f) strength = 0.0f;
- if (strength>1.0f) strength = 1.0f;
-
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- float a = 1.0f-5.0f*((float)((x-0.5f*(xmax+xmin))*(x-0.5f*(xmax+xmin))+(y-0.5f*(ymax+ymin))*(y-0.5f*(ymax+ymin))))/((float)((xmax-xmin)*(ymax-ymin)));
- if (a<0) a=0;
- color = BlindGetPixelColor(x,y);
- color.rgbRed = (uint8_t)(a*min(color.rgbGreen,color.rgbBlue)+(1.0f-a)*color.rgbRed);
- BlindSetPixelColor(x,y,color);
- }
- }
- }
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Changes the saturation of the image.
- * \param saturation: can be from -100 to 100, positive values increase the saturation.
- * \param colorspace: can be 1 (HSL) or 2 (YUV).
- * \return true if everything is ok
- */
-bool CxImage::Saturate(const int32_t saturation, const int32_t colorspace)
-{
- if (!pDib)
- return false;
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (xmin==xmax || ymin==ymax)
- return false;
-
- uint8_t cTable[256];
-
- switch(colorspace)
- {
- case 1:
- {
- for (int32_t i=0;i<256;i++) {
- cTable[i] = (uint8_t)max(0,min(255,(int32_t)(i + saturation)));
- }
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- RGBQUAD c = RGBtoHSL(BlindGetPixelColor(x,y));
- c.rgbGreen = cTable[c.rgbGreen];
- c = HSLtoRGB(c);
- BlindSetPixelColor(x,y,c);
- }
- }
- }
- }
- break;
- case 2:
- {
- for (int32_t i=0;i<256;i++) {
- cTable[i] = (uint8_t)max(0,min(255,(int32_t)((i-128)*(100 + saturation)/100.0f + 128.5f)));
- }
- for(int32_t y=ymin; y<ymax; y++){
- info.nProgress = (int32_t)(100*(y-ymin)/(ymax-ymin));
- if (info.nEscape) break;
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- RGBQUAD c = RGBtoYUV(BlindGetPixelColor(x,y));
- c.rgbGreen = cTable[c.rgbGreen];
- c.rgbBlue = cTable[c.rgbBlue];
- c = YUVtoRGB(c);
- BlindSetPixelColor(x,y,c);
- }
- }
- }
- }
- break;
- default:
- strcpy(info.szLastError,"Saturate: wrong colorspace");
- return false;
- }
- return true;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Solarize: convert all colors above a given lightness level into their negative
- * \param level : lightness threshold. Range = 0 to 255; default = 128.
- * \param bLinkedChannels: true = compare with luminance, preserve colors (default)
- * false = compare with independent R,G,B levels
- * \return true if everything is ok
- * \author [Priyank Bolia] (priyank_bolia(at)yahoo(dot)com); changes [DP]
- */
-bool CxImage::Solarize(uint8_t level, bool bLinkedChannels)
-{
- if (!pDib) return false;
-
- int32_t xmin,xmax,ymin,ymax;
- if (pSelection){
- xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
- ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (head.biBitCount<=8){
- if (IsGrayScale()){ //GRAYSCALE, selection
- for(int32_t y=ymin; y<ymax; y++){
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- uint8_t index = BlindGetPixelIndex(x,y);
- RGBQUAD color = GetPaletteColor(index);
- if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
- BlindSetPixelIndex(x,y,255-index);
- }
- }
- }
- }
- } else { //PALETTE, full image
- RGBQUAD* ppal=GetPalette();
- for(uint32_t i=0;i<head.biClrUsed;i++){
- RGBQUAD color = GetPaletteColor((uint8_t)i);
- if (bLinkedChannels){
- if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
- ppal[i].rgbBlue =(uint8_t)(255-ppal[i].rgbBlue);
- ppal[i].rgbGreen =(uint8_t)(255-ppal[i].rgbGreen);
- ppal[i].rgbRed =(uint8_t)(255-ppal[i].rgbRed);
- }
- } else {
- if (color.rgbBlue>level) ppal[i].rgbBlue =(uint8_t)(255-ppal[i].rgbBlue);
- if (color.rgbGreen>level) ppal[i].rgbGreen =(uint8_t)(255-ppal[i].rgbGreen);
- if (color.rgbRed>level) ppal[i].rgbRed =(uint8_t)(255-ppal[i].rgbRed);
- }
- }
- }
- } else { //RGB, selection
- for(int32_t y=ymin; y<ymax; y++){
- for(int32_t x=xmin; x<xmax; x++){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- RGBQUAD color = BlindGetPixelColor(x,y);
- if (bLinkedChannels){
- if ((uint8_t)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue)>level){
- color.rgbRed = (uint8_t)(255-color.rgbRed);
- color.rgbGreen = (uint8_t)(255-color.rgbGreen);
- color.rgbBlue = (uint8_t)(255-color.rgbBlue);
- }
- } else {
- if (color.rgbBlue>level) color.rgbBlue =(uint8_t)(255-color.rgbBlue);
- if (color.rgbGreen>level) color.rgbGreen =(uint8_t)(255-color.rgbGreen);
- if (color.rgbRed>level) color.rgbRed =(uint8_t)(255-color.rgbRed);
- }
- BlindSetPixelColor(x,y,color);
- }
- }
- }
- }
-
- //invert transparent color only in case of full image processing
- if (pSelection==0 || (!IsGrayScale() && IsIndexed())){
- if (bLinkedChannels){
- if ((uint8_t)RGB2GRAY(info.nBkgndColor.rgbRed,info.nBkgndColor.rgbGreen,info.nBkgndColor.rgbBlue)>level){
- info.nBkgndColor.rgbBlue = (uint8_t)(255-info.nBkgndColor.rgbBlue);
- info.nBkgndColor.rgbGreen = (uint8_t)(255-info.nBkgndColor.rgbGreen);
- info.nBkgndColor.rgbRed = (uint8_t)(255-info.nBkgndColor.rgbRed);
- }
- } else {
- if (info.nBkgndColor.rgbBlue>level) info.nBkgndColor.rgbBlue = (uint8_t)(255-info.nBkgndColor.rgbBlue);
- if (info.nBkgndColor.rgbGreen>level) info.nBkgndColor.rgbGreen = (uint8_t)(255-info.nBkgndColor.rgbGreen);
- if (info.nBkgndColor.rgbRed>level) info.nBkgndColor.rgbRed = (uint8_t)(255-info.nBkgndColor.rgbRed);
- }
- }
-
- return true;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Converts the RGB triplets to and from different colorspace
- * \param dstColorSpace: destination colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
- * \param srcColorSpace: source colorspace; 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
- * \return true if everything is ok
- */
-bool CxImage::ConvertColorSpace(const int32_t dstColorSpace, const int32_t srcColorSpace)
-{
- if (!pDib)
- return false;
-
- if (dstColorSpace == srcColorSpace)
- return true;
-
- int32_t w = GetWidth();
- int32_t h = GetHeight();
-
- for (int32_t y=0;y<h;y++){
- info.nProgress = (int32_t)(100*y/h);
- if (info.nEscape) break;
- for (int32_t x=0;x<w;x++){
- RGBQUAD c = BlindGetPixelColor(x,y);
- switch (srcColorSpace){
- case 0:
- break;
- case 1:
- c = HSLtoRGB(c);
- break;
- case 2:
- c = YUVtoRGB(c);
- break;
- case 3:
- c = YIQtoRGB(c);
- break;
- case 4:
- c = XYZtoRGB(c);
- break;
- default:
- strcpy(info.szLastError,"ConvertColorSpace: unknown source colorspace");
- return false;
- }
- switch (dstColorSpace){
- case 0:
- break;
- case 1:
- c = RGBtoHSL(c);
- break;
- case 2:
- c = RGBtoYUV(c);
- break;
- case 3:
- c = RGBtoYIQ(c);
- break;
- case 4:
- c = RGBtoXYZ(c);
- break;
- default:
- strcpy(info.szLastError,"ConvertColorSpace: unknown destination colorspace");
- return false;
- }
- BlindSetPixelColor(x,y,c);
- }
- }
- return true;
-}
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Finds the optimal (global or local) treshold for image binarization
- * \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
- * \param pBox: region from where the threshold is computed; 0 = full image (default).
- * \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
- * the pContrastMask image must be grayscale with same with and height of the current image,
- * can be obtained from the current image with a filter:
- * CxImage iContrastMask(*image,true,false,false);
- * iContrastMask.GrayScale();
- * int32_t edge[]={-1,-1,-1,-1,8,-1,-1,-1,-1};
- * iContrastMask.Filter(edge,3,1,0);
- * int32_t blur[]={1,1,1,1,1,1,1,1,1};
- * iContrastMask.Filter(blur,3,9,0);
- * \return optimal threshold; -1 = error.
- * \sa AdaptiveThreshold
- */
-int32_t CxImage::OptimalThreshold(int32_t method, RECT * pBox, CxImage* pContrastMask)
-{
- if (!pDib)
- return false;
-
- if (head.biBitCount!=8){
- strcpy(info.szLastError,"OptimalThreshold works only on 8 bit images");
- return -1;
- }
-
- if (pContrastMask){
- if (!pContrastMask->IsValid() ||
- !pContrastMask->IsGrayScale() ||
- pContrastMask->GetWidth() != GetWidth() ||
- pContrastMask->GetHeight() != GetHeight()){
- strcpy(info.szLastError,"OptimalThreshold invalid ContrastMask");
- return -1;
- }
- }
-
- int32_t xmin,xmax,ymin,ymax;
- if (pBox){
- xmin = max(pBox->left,0);
- xmax = min(pBox->right,head.biWidth);
- ymin = max(pBox->bottom,0);
- ymax = min(pBox->top,head.biHeight);
- } else {
- xmin = ymin = 0;
- xmax = head.biWidth; ymax=head.biHeight;
- }
-
- if (xmin>=xmax || ymin>=ymax)
- return -1;
-
- double p[256];
- memset(p, 0, 256*sizeof(double));
- //build histogram
- for (int32_t y = ymin; y<ymax; y++){
- uint8_t* pGray = GetBits(y) + xmin;
- uint8_t* pContr = 0;
- if (pContrastMask) pContr = pContrastMask->GetBits(y) + xmin;
- for (int32_t x = xmin; x<xmax; x++){
- uint8_t n = *pGray++;
- if (pContr){
- if (*pContr) p[n]++;
- pContr++;
- } else {
- p[n]++;
- }
- }
- }
-
- //find histogram limits
- int32_t gray_min = 0;
- while (gray_min<255 && p[gray_min]==0) gray_min++;
- int32_t gray_max = 255;
- while (gray_max>0 && p[gray_max]==0) gray_max--;
- if (gray_min > gray_max)
- return -1;
- if (gray_min == gray_max){
- if (gray_min == 0)
- return 0;
- else
- return gray_max-1;
- }
-
- //compute total moments 0th,1st,2nd order
- int32_t i,k;
- double w_tot = 0;
- double m_tot = 0;
- double q_tot = 0;
- for (i = gray_min; i <= gray_max; i++){
- w_tot += p[i];
- m_tot += i*p[i];
- q_tot += i*i*p[i];
- }
-
- double L, L1max, L2max, L3max, L4max; //objective functions
- int32_t th1,th2,th3,th4; //optimal thresholds
- L1max = L2max = L3max = L4max = 0;
- th1 = th2 = th3 = th4 = -1;
-
- double w1, w2, m1, m2, q1, q2, s1, s2;
- w1 = m1 = q1 = 0;
- for (i = gray_min; i < gray_max; i++){
- w1 += p[i];
- w2 = w_tot - w1;
- m1 += i*p[i];
- m2 = m_tot - m1;
- q1 += i*i*p[i];
- q2 = q_tot - q1;
- s1 = q1/w1-m1*m1/w1/w1; //s1 = q1/w1-pow(m1/w1,2);
- s2 = q2/w2-m2*m2/w2/w2; //s2 = q2/w2-pow(m2/w2,2);
-
- //Otsu
- L = -(s1*w1 + s2*w2); //implemented as definition
- //L = w1 * w2 * (m2/w2 - m1/w1)*(m2/w2 - m1/w1); //implementation that doesn't need s1 & s2
- if (L1max < L || th1<0){
- L1max = L;
- th1 = i;
- }
-
- //Kittler and Illingworth
- if (s1>0 && s2>0){
- L = w1*log(w1/sqrt(s1))+w2*log(w2/sqrt(s2));
- //L = w1*log(w1*w1/s1)+w2*log(w2*w2/s2);
- if (L2max < L || th2<0){
- L2max = L;
- th2 = i;
- }
- }
-
- //max entropy
- L = 0;
- for (k=gray_min;k<=i;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w1)/w1;
- for (k;k<=gray_max;k++) if (p[k] > 0) L -= p[k]*log(p[k]/w2)/w2;
- if (L3max < L || th3<0){
- L3max = L;
- th3 = i;
- }
-
- //potential difference (based on Electrostatic Binarization method by J. Acharya & G. Sreechakra)
- // L=-fabs(vdiff/vsum); è molto selettivo, sembra che L=-fabs(vdiff) o L=-(vsum)
- // abbiano lo stesso valore di soglia... il che semplificherebbe molto la routine
- double vdiff = 0;
- for (k=gray_min;k<=i;k++)
- vdiff += p[k]*(i-k)*(i-k);
- double vsum = vdiff;
- for (k;k<=gray_max;k++){
- double dv = p[k]*(k-i)*(k-i);
- vdiff -= dv;
- vsum += dv;
- }
- if (vsum>0) L = -fabs(vdiff/vsum); else L = 0;
- if (L4max < L || th4<0){
- L4max = L;
- th4 = i;
- }
- }
-
- int32_t threshold;
- switch (method){
- case 1: //Otsu
- threshold = th1;
- break;
- case 2: //Kittler and Illingworth
- threshold = th2;
- break;
- case 3: //max entropy
- threshold = th3;
- break;
- case 4: //potential difference
- threshold = th4;
- break;
- default: //auto
- {
- int32_t nt = 0;
- threshold = 0;
- if (th1>=0) { threshold += th1; nt++;}
- if (th2>=0) { threshold += th2; nt++;}
- if (th3>=0) { threshold += th3; nt++;}
- if (th4>=0) { threshold += th4; nt++;}
- if (nt)
- threshold /= nt;
- else
- threshold = (gray_min+gray_max)/2;
-
- /*better(?) but really expensive alternative:
- n = 0:255;
- pth1 = c1(th1)/sqrt(2*pi*s1(th1))*exp(-((n - m1(th1)).^2)/2/s1(th1)) + c2(th1)/sqrt(2*pi*s2(th1))*exp(-((n - m2(th1)).^2)/2/s2(th1));
- pth2 = c1(th2)/sqrt(2*pi*s1(th2))*exp(-((n - m1(th2)).^2)/2/s1(th2)) + c2(th2)/sqrt(2*pi*s2(th2))*exp(-((n - m2(th2)).^2)/2/s2(th2));
- ...
- mse_th1 = sum((p-pth1).^2);
- mse_th2 = sum((p-pth2).^2);
- ...
- select th# that gives minimum mse_th#
- */
-
- }
- }
-
- if (threshold <= gray_min || threshold >= gray_max)
- threshold = (gray_min+gray_max)/2;
-
- return threshold;
-}
-///////////////////////////////////////////////////////////////////////////////
-/**
- * Converts the image to B&W, using an optimal threshold mask
- * \param method: 0 = average all methods (default); 1 = Otsu; 2 = Kittler & Illingworth; 3 = max entropy; 4 = potential difference;
- * \param nBoxSize: the image is divided into "nBoxSize x nBoxSize" blocks, from where the threshold is computed; min = 8; default = 64.
- * \param pContrastMask: limit the computation only in regions with contrasted (!=0) pixels; default = 0.
- * \param nBias: global offset added to the threshold mask; default = 0.
- * \param fGlobalLocalBalance: balance between local and global threshold. default = 0.5
- * fGlobalLocalBalance can be from 0.0 (use only local threshold) to 1.0 (use only global threshold)
- * the pContrastMask image must be grayscale with same with and height of the current image,
- * \return true if everything is ok.
- * \sa OptimalThreshold
- */
-bool CxImage::AdaptiveThreshold(int32_t method, int32_t nBoxSize, CxImage* pContrastMask, int32_t nBias, float fGlobalLocalBalance)
-{
- if (!pDib)
- return false;
-
- if (pContrastMask){
- if (!pContrastMask->IsValid() ||
- !pContrastMask->IsGrayScale() ||
- pContrastMask->GetWidth() != GetWidth() ||
- pContrastMask->GetHeight() != GetHeight()){
- strcpy(info.szLastError,"AdaptiveThreshold invalid ContrastMask");
- return false;
- }
- }
-
- if (nBoxSize<8) nBoxSize = 8;
- if (fGlobalLocalBalance<0.0f) fGlobalLocalBalance = 0.0f;
- if (fGlobalLocalBalance>1.0f) fGlobalLocalBalance = 1.0f;
-
- int32_t mw = (head.biWidth + nBoxSize - 1)/nBoxSize;
- int32_t mh = (head.biHeight + nBoxSize - 1)/nBoxSize;
-
- CxImage mask(mw,mh,8);
- if(!mask.GrayScale())
- return false;
-
- if(!GrayScale())
- return false;
-
- int32_t globalthreshold = OptimalThreshold(method, 0, pContrastMask);
- if (globalthreshold <0)
- return false;
-
- for (int32_t y=0; y<mh; y++){
- for (int32_t x=0; x<mw; x++){
- info.nProgress = (int32_t)(100*(x+y*mw)/(mw*mh));
- if (info.nEscape) break;
- RECT r;
- r.left = x*nBoxSize;
- r.right = r.left + nBoxSize;
- r.bottom = y*nBoxSize;
- r.top = r.bottom + nBoxSize;
- int32_t threshold = OptimalThreshold(method, &r, pContrastMask);
- if (threshold <0) return false;
- mask.SetPixelIndex(x,y,(uint8_t)max(0,min(255,nBias+((1.0f-fGlobalLocalBalance)*threshold + fGlobalLocalBalance*globalthreshold))));
- }
- }
-
- mask.Resample(mw*nBoxSize,mh*nBoxSize,0);
- mask.Crop(0,head.biHeight,head.biWidth,0);
-
- if(!Threshold(&mask))
- return false;
-
- return true;
-}
-///////////////////////////////////////////////////////////////////////////////
-/**
- * Finds the contour of an object with a given color
- * \param color_target: object color
- * \param color_trace: contour color
- * \return true if everything is ok.
- * \sa Edge, Contour
- */
-bool CxImage::Trace(RGBQUAD color_target, RGBQUAD color_trace)
-{
- if (!pDib) return false;
-
- RGBQUAD color;
- bool bFindStartPoint;
- int32_t nFindPoint;
- POINT StartPoint,CurrentPoint;
- int32_t Direction[8][2]={{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}, {0,1},{1,1}};
- int32_t BeginDirect = 0;
- int32_t x,y;
-
- CxImage tmp;
- tmp.CopyInfo(*this);
- tmp.Create(head.biWidth,head.biHeight,24,info.dwType);
- if (!tmp.IsValid()){
- strcpy(info.szLastError,tmp.GetLastError());
- return false;
- }
- tmp.Clear(255);
-
- CurrentPoint.x = StartPoint.x = CurrentPoint.y = StartPoint.y = 0;
- bFindStartPoint = false;
- for (y=head.biHeight-1;y>=0 && !bFindStartPoint;y--){
- info.nProgress = (int32_t)(100*y/head.biHeight);
- if (info.nEscape) break;
- for (x=0;x<head.biWidth && !bFindStartPoint;x++){
- color = BlindGetPixelColor(x,y);
- if (color.rgbRed == color_target.rgbRed &&
- color.rgbGreen == color_target.rgbGreen &&
- color.rgbBlue == color_target.rgbBlue )
- {
- bFindStartPoint = true;
- CurrentPoint.x = StartPoint.x = x;
- CurrentPoint.y = StartPoint.y = y;
- }
- }
- }
-
- while(bFindStartPoint)
- {
- nFindPoint = 8;
- while(nFindPoint)
- {
- x = CurrentPoint.x + Direction[BeginDirect][0];
- y = CurrentPoint.y + Direction[BeginDirect][1];
- color = GetPixelColor(x,y);
-
- if (IsInside(x,y) &&
- color.rgbRed == color_target.rgbRed &&
- color.rgbGreen == color_target.rgbGreen &&
- color.rgbBlue == color_target.rgbBlue )
- {
- nFindPoint = 0;
- CurrentPoint.x = x;
- CurrentPoint.y = y;
-
- if(x == StartPoint.x && y == StartPoint.y)
- bFindStartPoint = false;
-
- tmp.BlindSetPixelColor(x,y,color_trace);
-
- BeginDirect--;
- if(BeginDirect == -1) BeginDirect = 7;
- }
- else
- {
- BeginDirect++;
- if(BeginDirect == 8) BeginDirect = 0;
- nFindPoint--;
- if(nFindPoint == 0) {
- bFindStartPoint = false;
- tmp.SetPixelColor(CurrentPoint.x,CurrentPoint.y,color_trace);
- }
- }
- }
- }
- Transfer(tmp);
- return true;
-}
-
-#ifndef __MINGW32__
-////////////////////////////////////////////////////////////////////////////////
-#include <queue>
-////////////////////////////////////////////////////////////////////////////////
-/**
- * Flood Fill
- * \param xStart, yStart: starting point
- * \param cFillColor: filling color
- * \param nTolerance: deviation from the starting point color
- * \param nOpacity: can be from 0 (transparent) to 255 (opaque, default)
- * \param bSelectFilledArea: if true, the pixels in the region are also set in the selection layer; default = false
- * \param nSelectionLevel: if bSelectFilledArea is true, the selected pixels are set to nSelectionLevel; default = 255
- * Note: nOpacity=0 && bSelectFilledArea=true act as a "magic wand"
- * \return true if everything is ok
- */
-bool CxImage::FloodFill(const int32_t xStart, const int32_t yStart, const RGBQUAD cFillColor, const uint8_t nTolerance,
- uint8_t nOpacity, const bool bSelectFilledArea, const uint8_t nSelectionLevel)
-{
- if (!pDib)
- return false;
-
- if (!IsInside(xStart,yStart))
- return true;
-
-#if CXIMAGE_SUPPORT_SELECTION
- if (!SelectionIsInside(xStart,yStart))
- return true;
-#endif //CXIMAGE_SUPPORT_SELECTION
-
- RGBQUAD* pPalette=NULL;
- uint16_t bpp = GetBpp();
- //nTolerance or nOpacity implemented only for grayscale or 24bpp images
- if ((nTolerance || nOpacity != 255) && !(head.biBitCount == 24 || IsGrayScale())){
- pPalette = new RGBQUAD[head.biClrUsed];
- memcpy(pPalette, GetPalette(),GetPaletteSize());
- if (!IncreaseBpp(24))
- return false;
- }
-
- uint8_t* pFillMask = (uint8_t*)calloc(head.biWidth * head.biHeight,1);
- if (!pFillMask)
- return false;
-
-//------------------------------------- Begin of Flood Fill
- POINT offset[4] = {{-1,0},{0,-1},{1,0},{0,1}};
- std::queue<POINT> q;
- POINT point = {xStart,yStart};
- q.push(point);
-
- if (IsIndexed()){ //--- Generic indexed image, no tolerance OR Grayscale image with tolerance
- uint8_t idxRef = GetPixelIndex(xStart,yStart);
- uint8_t idxFill = GetNearestIndex(cFillColor);
- uint8_t idxMin = (uint8_t)min(255, max(0,(int32_t)(idxRef - nTolerance)));
- uint8_t idxMax = (uint8_t)min(255, max(0,(int32_t)(idxRef + nTolerance)));
-
- while(!q.empty())
- {
- point = q.front();
- q.pop();
-
- for (int32_t z=0; z<4; z++){
- int32_t x = point.x + offset[z].x;
- int32_t y = point.y + offset[z].y;
- if(IsInside(x,y)){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- uint8_t idx = BlindGetPixelIndex(x, y);
- uint8_t* pFill = pFillMask + x + y * head.biWidth;
- if (*pFill==0 && idxMin <= idx && idx <= idxMax )
- {
- if (nOpacity>0){
- if (nOpacity == 255)
- BlindSetPixelIndex(x, y, idxFill);
- else
- BlindSetPixelIndex(x, y, (uint8_t)((idxFill * nOpacity + idx * (255-nOpacity))>>8));
- }
- POINT pt = {x,y};
- q.push(pt);
- *pFill = 1;
- }
- }
- }
- }
- }
- } else { //--- RGB image
- RGBQUAD cRef = GetPixelColor(xStart,yStart);
- RGBQUAD cRefMin, cRefMax;
- cRefMin.rgbRed = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbRed - nTolerance)));
- cRefMin.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbGreen - nTolerance)));
- cRefMin.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbBlue - nTolerance)));
- cRefMax.rgbRed = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbRed + nTolerance)));
- cRefMax.rgbGreen = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbGreen + nTolerance)));
- cRefMax.rgbBlue = (uint8_t)min(255, max(0,(int32_t)(cRef.rgbBlue + nTolerance)));
-
- while(!q.empty())
- {
- point = q.front();
- q.pop();
-
- for (int32_t z=0; z<4; z++){
- int32_t x = point.x + offset[z].x;
- int32_t y = point.y + offset[z].y;
- if(IsInside(x,y)){
-#if CXIMAGE_SUPPORT_SELECTION
- if (BlindSelectionIsInside(x,y))
-#endif //CXIMAGE_SUPPORT_SELECTION
- {
- RGBQUAD cc = BlindGetPixelColor(x, y);
- uint8_t* pFill = pFillMask + x + y * head.biWidth;
- if (*pFill==0 &&
- cRefMin.rgbRed <= cc.rgbRed && cc.rgbRed <= cRefMax.rgbRed &&
- cRefMin.rgbGreen <= cc.rgbGreen && cc.rgbGreen <= cRefMax.rgbGreen &&
- cRefMin.rgbBlue <= cc.rgbBlue && cc.rgbBlue <= cRefMax.rgbBlue )
- {
- if (nOpacity>0){
- if (nOpacity == 255)
- BlindSetPixelColor(x, y, cFillColor);
- else
- {
- cc.rgbRed = (uint8_t)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
- cc.rgbGreen = (uint8_t)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
- cc.rgbBlue = (uint8_t)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
- BlindSetPixelColor(x, y, cc);
- }
- }
- POINT pt = {x,y};
- q.push(pt);
- *pFill = 1;
- }
- }
- }
- }
- }
- }
- if (pFillMask[xStart+yStart*head.biWidth] == 0 && nOpacity>0){
- if (nOpacity == 255)
- BlindSetPixelColor(xStart, yStart, cFillColor);
- else
- {
- RGBQUAD cc = BlindGetPixelColor(xStart, yStart);
- cc.rgbRed = (uint8_t)((cFillColor.rgbRed * nOpacity + cc.rgbRed * (255-nOpacity))>>8);
- cc.rgbGreen = (uint8_t)((cFillColor.rgbGreen * nOpacity + cc.rgbGreen * (255-nOpacity))>>8);
- cc.rgbBlue = (uint8_t)((cFillColor.rgbBlue * nOpacity + cc.rgbBlue * (255-nOpacity))>>8);
- BlindSetPixelColor(xStart, yStart, cc);
- }
- }
- pFillMask[xStart+yStart*head.biWidth] = 1;
-//------------------------------------- End of Flood Fill
-
- //if necessary, restore the original BPP and palette
- if (pPalette){
- DecreaseBpp(bpp, false, pPalette);
- delete [] pPalette;
- }
-
-#if CXIMAGE_SUPPORT_SELECTION
- if (bSelectFilledArea){
- if (!SelectionIsValid()){
- if (!SelectionCreate()){
- return false;
- }
- SelectionClear();
- info.rSelectionBox.right = head.biWidth;
- info.rSelectionBox.top = head.biHeight;
- info.rSelectionBox.left = info.rSelectionBox.bottom = 0;
- }
- RECT r;
- SelectionGetBox(r);
- for (int32_t y = r.bottom; y < r.top; y++){
- uint8_t* pFill = pFillMask + r.left + y * head.biWidth;
- for (int32_t x = r.left; x<r.right; x++){
- if (*pFill) SelectionSet(x,y,nSelectionLevel);
- pFill++;
- }
- }
- SelectionRebuildBox();
- }
-#endif //CXIMAGE_SUPPORT_SELECTION
-
- free(pFillMask);
-
- return true;
-}
-#endif //__MINGW32__
-
-////////////////////////////////////////////////////////////////////////////////
-#endif //CXIMAGE_SUPPORT_DSP